This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A069891 #31 Sep 08 2022 08:45:05 %S A069891 0,1,3,6,7,12,18,25,27,28,38,49,52,65,79,94,95,112,114,133,138,159, %T A069891 181,204,210,211,237,240,247,276,306,337,339,372,406,441,442,479,517, %U A069891 556,566,607,649,692,703,708,754,801,804,805,807,858,871,924,930,985,999 %N A069891 a(n) = Sum_{k=1..n} A007913(k), the squarefree part of k. %C A069891 Sum_{k=1..n, k squarefree} (1/k) = Sum{k=1..n} (mu(k)^2/k) = (1/zeta(2))*(log(n) + gamma - 2*zeta'(2)/zeta(2)) + O(1/sqrt(n)). (Suryanarayana) %D A069891 D. Suryanarayana, Asymptotic formula for sum_{n <= x} mu^{2}(n)/n, Indian J. Math. 9 (1967/1968) 543-545. %H A069891 Amiram Eldar, <a href="/A069891/b069891.txt">Table of n, a(n) for n = 0..10000</a> %H A069891 Rafael Jakimczuk, <a href="https://dx.doi.org/10.12988/imf.2017.7113">Two Topics in Number Theory: Sum of Divisors of the Primorial and Sum of Squarefree Parts</a>, International Mathematical Forum, Vol. 12, 2017, no. 7, pp. 331-338. %F A069891 a(n) = Sum_{d=1..floor(sqrt(n))} f(d)*binomial(floor(n/d^2)+1, 2) where f(d)=A046970(d) is the product of 1-p^2 over all prime divisors p of d. %F A069891 a(n) is asymptotic to r*n^2, where r = Pi^2/30 = 0.3289868... %t A069891 a[n_] := Sum[If[d == 1, 1, Times@@(1-#1[[1]]^2&) /@ FactorInteger[d]] * Binomial[Floor[n/d^2]+1, 2], {d, 1, Floor[Sqrt[n]]}]; Array[a, 100, 0] (* corrected by _Amiram Eldar_, Apr 02 2020 *) %o A069891 (Magma) [0] cat [&+[Squarefree(k):k in [1..n]]:n in [1..60]]; // _Marius A. Burtea_, Dec 19 2019 %o A069891 (PARI) a(n) = sum(k=1, n, core(k)); \\ _Michel Marcus_, Dec 19 2019 %Y A069891 Cf. A007913, A046970, A069087. %K A069891 nonn %O A069891 0,3 %A A069891 _Dean Hickerson_, Apr 09 2002