This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A069899 #12 Feb 11 2025 01:19:55 %S A069899 2,3,4,5,6,7,8,9,11,12,13,15,16,17,18,19,23,24,25,27,29,31,32,35,36, %T A069899 37,41,43,45,47,48,49,53,54,59,61,64,67,71,72,73,75,77,79,81,83,89,91, %U A069899 96,97,101,103,107,108,109,113,121,125,127,128,131,135,137,139,143,144 %N A069899 Numbers k such that the integer quotient of largest and smallest prime factors of k is 1. %C A069899 Numbers k such that A069897(k) = floor(P(k)/p(k)) = 1, where P(k) and p(k) are largest and least prime factor of k, respectively. %C A069899 Numbers k > 1 such that A006530(k) < 2*A020639(k). - _Amiram Eldar_, Feb 10 2025 %H A069899 Amiram Eldar, <a href="/A069899/b069899.txt">Table of n, a(n) for n = 1..10000</a> %F A069899 a(n) = A081306(n+1). - _Amiram Eldar_, Feb 10 2025 %e A069899 Beside primes and prime powers, composite numbers like 96 are terms because floor(3/2) = 1. %t A069899 q[k_] := Module[{p = FactorInteger[k][[;;, 1]]}, p[[-1]] < 2*p[[1]]]; Select[Range[2, 150], q] (* _Amiram Eldar_, Feb 10 2025 *) %o A069899 (PARI) isok(k) = if(k == 1, 0, my(p = factor(k)[,1]); p[#p] < 2*p[1]); \\ _Amiram Eldar_, Feb 10 2025 %Y A069899 Cf. A006530, A020639, A069897, A069900, A081306. %K A069899 nonn %O A069899 1,1 %A A069899 _Labos Elemer_, Apr 10 2002