This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A069906 #43 Jul 03 2025 18:52:26 %S A069906 0,0,0,0,0,1,1,2,2,4,5,8,9,14,16,23,25,35,39,52,57,74,81,103,111,139, %T A069906 150,184,197,239,256,306,325,385,409,480,507,590,623,719,756,867,911, %U A069906 1038,1087,1232,1289,1453,1516,1701,1774,1981,2061,2293 %N A069906 Number of pentagons that can be formed with perimeter n. In other words, number of partitions of n into five parts such that the sum of any four is more than the fifth. %C A069906 From _Frank M Jackson_, Jul 10 2012: (Start) %C A069906 I recently commented on A062890 that: %C A069906 "Partition sets of n into four parts (sides) such that the sum of any three is more than the fourth do not uniquely define a quadrilateral, even if it is further constrained to be cyclic. This is because the order of adjacent sides is important. E.g. the partition set [1,1,2,2] for a perimeter n=6 can be reordered to generate two non-congruent cyclic quadrilaterals, [1,2,1,2] and [1,1,2,2], where the first is a rectangle and the second a kite." %C A069906 This comment applies to all integer polygons (other than triangles) that are generated from a perimeter of length n. Not sure how best to correct for the above observation but my suggestion would be to change the definition of the present sequence to read: %C A069906 "The number of cyclic integer pentagons differing only in circumradius that can be generated from an integer perimeter n." (End) %H A069906 Seiichi Manyama, <a href="/A069906/b069906.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from T. D. Noe) %H A069906 G. E. Andrews, P. Paule and A. Riese, <a href="http://www.risc.uni-linz.ac.at/research/combinat/risc/publications/#ppaule">MacMahon's partition analysis III. The Omega package</a>, p. 19. %H A069906 G. E. Andrews, P. Paule and A. Riese, <a href="http://www.risc.jku.at/publications/download/risc_163/PAIX.pdf">MacMahon's Partition Analysis IX: k-gon partitions</a>, Bull. Austral Math. Soc., 64 (2001), 321-329. %H A069906 <a href="/index/Rec#order_25">Index entries for linear recurrences with constant coefficients</a>, signature (0, 1, 0, 1, 1, 0, -1, 0, -1, -2, 0, 0, 0, 0, 2, 1, 0, 1, 0, -1, -1, 0, -1, 0, 1). %F A069906 G.f.: x^5*(1-x^11)/((1-x)*(1-x^2)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^8)). %F A069906 a(2*n+8) = A026811(2*n+8) - A002621(n), a(2*n+9) = A026811(2*n+9) - A002621(n) for n >= 0. - _Seiichi Manyama_, Jun 08 2017 %t A069906 CoefficientList[Series[x^5(1-x^11)/((1-x)(1-x^2)(1-x^4)(1-x^5)(1-x^6) (1-x^8)),{x,0,60}],x] (* _Harvey P. Dale_, Dec 16 2011 *) %Y A069906 Number of k-gons that can be formed with perimeter n: A005044 (k=3), A062890 (k=4), this sequence (k=5), A069907 (k=6), A288253 (k=7), A288254 (k=8), A288255 (k=9), A288256 (k=10). %K A069906 nonn,easy %O A069906 0,8 %A A069906 _N. J. A. Sloane_, May 05 2002