cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069907 Number of hexagons that can be formed with perimeter n. In other words, partitions of n into six parts such that the sum of any 5 is more than the sixth.

This page as a plain text file.
%I A069907 #29 Jun 24 2017 06:54:36
%S A069907 0,0,0,0,0,0,1,1,2,3,4,6,9,12,16,22,28,37,46,59,71,91,107,134,157,193,
%T A069907 222,271,308,371,419,499,559,661,734,860,952,1106,1216,1405,1537,1764,
%U A069907 1923,2193,2381,2703,2923,3301,3561,4002,4302,4817,5164
%N A069907 Number of hexagons that can be formed with perimeter n. In other words, partitions of n into six parts such that the sum of any 5 is more than the sixth.
%H A069907 Seiichi Manyama, <a href="/A069907/b069907.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from T. D. Noe)
%H A069907 G. E. Andrews, P. Paule and A. Riese, <a href="https://doi.org/10.1006/eujc.2001.0527">MacMahon's partition analysis III: The Omega package</a>, European Journal of Combinatorics, Volume 22, Issue 7, October 2001, Pages 887-904.
%H A069907 G. E. Andrews, P. Paule and A. Riese, <a href="https://doi.org/10.1017/S0004972700039988">MacMahon's Partition Analysis IX: k-gon partitions</a>, Bull. Austral Math. Soc., 64 (2001), 321-329.
%H A069907 <a href="/index/Rec#order_33">Index entries for linear recurrences with constant coefficients</a>, signature (0, 1, 1, 1, -1, 0, -1, 0, 0, -1, 0, -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, 0, -1, 0, 0, -1, 0, -1, 1, 1, 1, 0, -1).
%F A069907 G.f.: x^6*(1-x^4+x^5+x^7-x^8-x^13)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^6)*(1-x^8)*(1-x^10)).
%F A069907 a(2*n+10) = A026812(2*n+10) - A002622(n), a(2*n+11) = A026812(2*n+11) - A002622(n) for n >= 0. - _Seiichi Manyama_, Jun 08 2017
%o A069907 (PARI) concat(vector(6), Vec(x^6*(1-x^4+x^5+x^7-x^8-x^13)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^6)*(1-x^8)*(1-x^10)) + O(x^80))) \\ _Michel Marcus_, Jun 24 2017
%Y A069907 Number of k-gons that can be formed with perimeter n: A005044 (k=3), A062890 (k=4), A069906 (k=5), this sequence (k=6), A288253 (k=7), A288254 (k=8), A288255 (k=9), A288256 (k=10).
%K A069907 nonn,easy
%O A069907 0,9
%A A069907 _N. J. A. Sloane_, May 05 2002