This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A069909 #11 Nov 16 2018 22:41:30 %S A069909 1,4,6,7,9,10,12,15,17,20,22,23,25,26,28,31,33,36,38,39,41,42,44,47, %T A069909 49,52,54,55,57,58,60,63,65,68,70,71,73,74,76,79,81,84,86,87,89,90,92, %U A069909 95,97,100,102,103,105,106,108,111,113,116,118,119,121 %N A069909 Numbers congruent to +-1, +-4, +-6, +-7 mod 16. %D A069909 G. E. Andrews et al., q-Engel series expansions and Slater's identities, Quaestiones Math., 24 (2001), 403-416. %H A069909 <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,0,-1,2,-1). %F A069909 G.f. x*(1+x)*(x^4+x^3-2*x^2+x+1) / ( (x^4+1)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011 %F A069909 a(0)=1, a(1)=4, a(2)=6, a(3)=7, a(4)=9, a(5)=10, a(n)=2*a(n-1)-a(n-2)- a(n-4)+ 2*a(n-5)-a(n-6). - _Harvey P. Dale_, Sep 09 2012 %t A069909 Select[Range[130],MemberQ[{1,4,6,7,9,10,12,15},Mod[#,16]]&] (* or *) LinearRecurrence[{2,-1,0,-1,2,-1},{1,4,6,7,9,10},80] (* _Harvey P. Dale_, Sep 09 2012 *) %Y A069909 Cf. A069908, A069910, A069911. %K A069909 nonn %O A069909 0,2 %A A069909 _N. J. A. Sloane_, May 05 2002