This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A069999 #82 Apr 24 2025 17:04:55 %S A069999 1,1,2,3,5,7,9,13,18,21,27,34,39,46,54,61,72,83,92,106,118,130,145, %T A069999 162,176,193,209,226,246,265,284,308,330,352,375,402,426,453,480,508, %U A069999 538,570,598,631,661,694,730,765,800,835,872,911,951,992,1030,1071,1115 %N A069999 Number of possible dimensions for commutators of n X n matrices; it is independent of the field. Or, given a partition P = (p_1, p_2, ..., p_m) of n with p_1 >= p_2 >= ... >= p_m, let S(P) = sum_j (2j-1)p_j; then a(n) = number of integers that are an S(P) for some partition. %C A069999 Or, given such a partition P of n, let T(P) = sum_i p_i^2; then a(n) = number of integers that are a T(P) for some P. While T(P) need not equal S(P) for a given partition, the two sets of integers are equal. Or, expand the infinite product prod_k 1/(1-x^{k^2}y^k) as a power series; then a(n) = number of terms of the form x^my^n having a nonzero coefficient. %C A069999 The least m for which there are distinct partitions x(1)+...+x(k) of n for which the sums of squares {x(i)^2} are not distinct is 6. - _Clark Kimberling_, Mar 06 2012 %C A069999 a(n) is also the number of possible counts of intersection points of n lines in the plane, no three concurrent. This is because n lines, grouped into pencils of size a_1,...,a_k, meet in P=Sum_{i<j} a_i a_j points, and such sums P are bijective with sums of squares S=a_1^2+...+a_k^2, thanks to n^2=S+2P. For example, a(10)=27 since 10 lines can meet in 0, 9, 16, 17, 21, 23, 24, 25 or 27..45 points. - _Alon Amit_, May 20 2019 %D A069999 Zachary Albertson and Evan Willett, "Possible Dimensions of Commutators of Matrices", Senior Thesis, Wake Forest University, May 09, 2002. %D A069999 Noah A. Rosenberg, Mathematical Properties of Population-Genetic Statistics, Princeton University Press, 2025, page 112. %H A069999 Joerg Arndt, <a href="/A069999/b069999.txt">Table of n, a(n) for n = 0..1000</a> %H A069999 Christian Brouder, William J. Keith, and Ângela Mestre, <a href="http://arxiv.org/abs/1301.0874">Closed forms for a multigraph enumeration</a>, arXiv preprint arXiv:1301.0874 [math.CO], 2013-2015. %H A069999 Phillip Tomas Heikoop, <a href="https://digitalcommons.wpi.edu/mqp-all/6822">Dimensions of Matrix Subalgebras</a>, Bachelor's Thesis, Worcester Polytechnic Institute (Massachusetts, 2019). %H A069999 Hideki Innan, Kangyu Zhang, Paul Marjoram, Simon Tavare, and Noah A. Rosenberg, <a href="https://doi.org/10.1534/genetics.104.032219">Statistical tests of the coalescent model based on the haplotype frequency distribution and the number of segregating sites</a>, Genetics 169 (2005), 1763-1777. %H A069999 Noah A. Rosenberg and Donna M. Zulman, <a href="https://doi.org/10.1111/1475-6773.13263">Measures of care fragmentation: mathematical insights from population genetics</a>, Health Services Research 55 (2020), 318-327. %H A069999 David Savitt and R. P. Stanley, <a href="https://doi.org/10.37236/1484">A Note on the Symmetric Powers of the Standard Representation of S_n</a>, Electronic J. Combinat, 7 (2000) #R6. %F A069999 No generating function is known. %F A069999 Asymptotic to n^2/2. - _Raphael R.M. Esquivel_, Dec 19 2024 %p A069999 b:= proc(n, i) option remember; `if`(n=0 or i=1, {n}, %p A069999 {b(n, i-1)[], map(x-> x+i^2, b(n-i, min(n-i, i)))[]}) %p A069999 end: %p A069999 a:= n-> nops(b(n$2)): %p A069999 seq(a(n), n=0..56); # _Alois P. Heinz_, Jun 02 2022 %t A069999 p[n_, k_] := (IntegerPartitions[n]^2)[[k]]; s[n_, k_] := Sum[p[n, k][[i]], {i, 1, Length[p[n, k]]}]; t = Table[s[n, k], {n, 1, 20}, {k, 1, Length[IntegerPartitions[n]]}]; Table[Length[Union[t[[n]]]], {n, 1, 20}] (* _Clark Kimberling_, Mar 06 2012 *) %o A069999 (PARI) %o A069999 a069999(N)= \\ terms up to a(N), b-file format %o A069999 { %o A069999 my( V = vector(N) ); %o A069999 V[1] = 'x; %o A069999 print(1," ", 1 ); %o A069999 for (j=2, N, %o A069999 my( t = x^(j*j) ); %o A069999 for (a=1, j-1, %o A069999 my( b = j - a ); %o A069999 if ( a > b, break() ); %o A069999 t += V[a] * V[b]; %o A069999 ); %o A069999 t = Pol( apply( x->x!=0, Vec(t) ) ); %o A069999 print(j," ", vecsum( Vec(t) ) ); %o A069999 V[j] = t; %o A069999 ); %o A069999 } \\ _Joerg Arndt_, Apr 19 2019 %Y A069999 Cf. A111212, A354468, A354800. %K A069999 easy,nonn,nice %O A069999 0,3 %A A069999 Jim Kuzmanovich (kuz(AT)wfu.edu), Apr 26 2002 %E A069999 More terms from _Robert Gerbicz_, Aug 27 2002 %E A069999 a(0)=1 prepended by _Alois P. Heinz_, Jun 02 2022