A070002 Numbers k such that phi(P(k)) - P(phi(k)) = 1, where P(k) is the largest prime factor of k.
45, 90, 135, 175, 180, 270, 350, 360, 405, 525, 540, 700, 720, 810, 875, 1050, 1080, 1215, 1400, 1440, 1573, 1575, 1620, 1750, 2100, 2160, 2430, 2625, 2800, 2880, 3146, 3150, 3240, 3500, 3645, 4200, 4320, 4375, 4719, 4725, 4860, 5250, 5491, 5600, 5760
Offset: 1
Keywords
Examples
m = 77077 = 7*7*11*11*13*13 is here because P(m) = 13, phi(P(13)) = 12, phi(m) = 55440 = 2*2*2*2*3*3*5*7*11 with P(Phi(55440)) = 13 and the difference is 13 - 12 = 1.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
pf[n_] := FactorInteger[n][[-1, 1]]; Do[s=EulerPhi[pf[n]]-pf[EulerPhi[n]]; If[Equal[s, 1], Print[n]], {n, 3, 100000}]
Comments