cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070003 Numbers divisible by the square of their largest prime factor.

This page as a plain text file.
%I A070003 #59 Feb 16 2025 08:32:46
%S A070003 4,8,9,16,18,25,27,32,36,49,50,54,64,72,75,81,98,100,108,121,125,128,
%T A070003 144,147,150,162,169,196,200,216,225,242,243,245,250,256,288,289,294,
%U A070003 300,324,338,343,361,363,375,392,400,432,441,450,484,486,490,500,507
%N A070003 Numbers divisible by the square of their largest prime factor.
%C A070003 Numbers n such that P(phi(n)) - phi(P(n)) = 1, where P(x) is the largest prime factor of x. P(phi(n)) - phi(P(n)) = A006530(A000010(n)) - A000010(A006530(n)).
%C A070003 Numbers n such that the value of the commutator of phi and P functions at n is -1.
%C A070003 Equivalently, n such that n and phi(n) have the same largest prime factor since Phi(p) = p-1 if p is prime. - _Benoit Cloitre_, Jun 08 2002
%C A070003 Since n is divisible by P(n)^2, n cannot divide P(n)! and so A057109 is a supersequence. Hence all A002034(a(n)) are composite. - _Jonathan Sondow_, Dec 28 2004
%C A070003 A225546 defines a self-inverse bijection between this sequence and A335740, considered as sets. - _Peter Munn_, Jul 19 2020
%H A070003 Charles R Greathouse IV, <a href="/A070003/b070003.txt">Table of n, a(n) for n = 1..10000</a>
%H A070003 Paul Erdős and Ron L. Graham, <a href="http://www.math.ucsd.edu/~ronspubs/76_12_factorial_products.pdf">On products of factorials</a>, Bull. Inst. Math. Acad. Sinica 4:2 (1976), pp. 337-355. [<a href="http://www.renyi.hu/~p_erdos/1976-25.pdf">alternate link</a>]
%H A070003 Paul Erdős and Ilias Kastanas, <a href="http://www.jstor.org/stable/2324376">Solution 6674:The smallest factorial that is a multiple of n</a>, Amer. Math. Monthly 101 (1994) 179.
%H A070003 A. J. Kempner, <a href="http://www.jstor.org/stable/2972639">Miscellanea</a>, Amer. Math. Monthly, 25 (1918), 201-210. See Section II, "Concerning the smallest integer m! divisible by a given integer n."
%H A070003 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GreatestPrimeFactor.html">Greatest Prime Factor</a>
%H A070003 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TotientFunction.html">Totient Function</a>
%F A070003 Erdős proved that there are x * exp(-(1 + o(1))sqrt(log x log log x)) members of this sequence up to x. - _Charles R Greathouse IV_, Mar 26 2012
%p A070003 isA070003 := proc(n)
%p A070003     if modp(n,A006530(n)^2) = 0 then # code re-use
%p A070003         true;
%p A070003     else
%p A070003         false;
%p A070003     end if;
%p A070003 end proc:
%p A070003 A070003 := proc(n)
%p A070003     option remember ;
%p A070003     if n =1 then
%p A070003         4;
%p A070003     else
%p A070003         for a from procname(n-1)+1 do
%p A070003             if isA070003(a) then
%p A070003                 return a
%p A070003             end if;
%p A070003         end do:
%p A070003     end if;
%p A070003 end proc:
%p A070003 seq( A070003(n),n=1..80) ; # _R. J. Mathar_, Jun 27 2024
%t A070003 p[n_] := FactorInteger[n][[-1, 1]]; ep[n_] := EulerPhi[n]; fQ[n_] := p[ep[n]] == 1 + ep[p[n]]; Select[ Range[ 510], fQ] (* _Robert G. Wilson v_, Mar 26 2012 *)
%t A070003 Select[Range[500], FactorInteger[#][[-1,2]] > 1 &] (* _T. D. Noe_, Dec 06 2012 *)
%o A070003 (PARI) for(n=3,1000,if(component(component(factor(n),1),omega(n))==component(component(factor(eulerphi(n)),1),omega(eulerphi(n))),print1(n,",")))
%o A070003 (PARI) is(n)=my(f=factor(n)[,2]);f[#f]>1 \\ _Charles R Greathouse IV_, Mar 21 2012
%o A070003 (PARI) sm(lim,mx)=if(mx==2,return(vector(log(lim+.5)\log(2)+1,i,1<<(i-1))));my(v=[1]);forprime(p=2,min(mx,lim),v=concat(v,p*sm(lim\p,p)));vecsort(v)
%o A070003 list(lim)=my(v=[]);forprime(p=2,sqrt(lim),v=concat(v,p^2*sm(lim\p^2,p)));vecsort(v) \\ _Charles R Greathouse IV_, Mar 27 2012
%o A070003 (Python)
%o A070003 from sympy import factorint
%o A070003 def ok(n): f = factorint(n); return f[max(f)] >= 2
%o A070003 print(list(filter(ok, range(4, 508)))) # _Michael S. Branicky_, Apr 08 2021
%Y A070003 Subsequence of A057109, A122145.
%Y A070003 Complement within A020725 of A102750.
%Y A070003 Cf. A000010, A006530, A068211, A070777, A070812, A070002, A070004, A007283, A070813, A070814, A070815, A070816, A002034, A102067, A102068.
%Y A070003 Related to A335740 via A225546.
%Y A070003 A195212 is a subsequence.
%Y A070003 Cf. A319988 (characteristic function). Positions of odd terms > 1 in A122111.
%K A070003 nonn
%O A070003 1,1
%A A070003 _Labos Elemer_, May 07 2002
%E A070003 New name from Jonathan Sondow and _Charles R Greathouse IV_, Mar 27 2012