cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070013 Number of prime factors of n divided by the number of n's distinct prime factors (rounded).

This page as a plain text file.
%I A070013 #16 Jan 10 2025 10:08:23
%S A070013 1,1,2,1,1,1,3,2,1,1,2,1,1,1,4,1,2,1,2,1,1,1,2,2,1,3,2,1,1,1,5,1,1,1,
%T A070013 2,1,1,1,2,1,1,1,2,2,1,1,3,2,2,1,2,1,2,1,2,1,1,1,1,1,1,2,6,1,1,1,2,1,
%U A070013 1,1,3,1,1,2,2,1,1,1,3,4,1,1,1,1,1,1,2,1,1,1,2,1,1,1,3,1,2,2,2,1,1,1,2,1,1
%N A070013 Number of prime factors of n divided by the number of n's distinct prime factors (rounded).
%C A070013 a(n) is the rounded average of the exponents in the prime factorization of n.
%H A070013 G. C. Greubel, <a href="/A070013/b070013.txt">Table of n, a(n) for n = 2..1000</a>
%F A070013 a(n) = round(bigomega(n)/omega(n)) for n>=2.
%e A070013 a(12)=2 because 12=2^2 * 3^1 and round(bigomega(12)/omega(12))=round((2+1)/2)=2.
%e A070013 a(36)=2 because 36=2^2 * 3^2 and round(bigomega(36)/omega(36))=round((2+2)/2)=2.
%e A070013 a(60)=1 because 60=2^2 * 3^1 * 5^1 and round(bigomega(60)/omega(60))= round((2+1+1)/3)=1.
%e A070013 36 is in A067340. 12 and 60 are in A070011.
%t A070013 Table[Round[PrimeOmega[n]/PrimeNu[n]], {n, 2, 50}] (* _G. C. Greubel_, May 08 2017 *)
%o A070013 (PARI) v=[]; for(n=2,150,v=concat(v,round(bigomega(n)/omega(n)))); v
%Y A070013 Cf. A001221 (omega(n)), A001222 (bigomega(n)), A067340 (ratio is an integer before rounding), A070011 (ratio is not an integer), A070012 (floor of ratio), A070014 (ceiling of ratio), A046660 (bigomega(n)-omega(n)).
%K A070013 nonn
%O A070013 2,3
%A A070013 _Rick L. Shepherd_, Apr 11 2002