cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070079 a(n) gives the odd leg of the unique primitive Pythagorean triangle with hypotenuse A002144(n).

This page as a plain text file.
%I A070079 #19 Jan 15 2015 10:35:54
%S A070079 3,5,15,21,35,9,45,11,55,39,65,99,91,15,105,51,85,165,19,95,195,221,
%T A070079 105,209,255,69,115,231,285,25,75,175,299,225,275,189,325,399,391,29,
%U A070079 145,351,425,261,459,279,341,165,231,575,465,551,35,105,609,315,589,385,675
%N A070079 a(n) gives the odd leg of the unique primitive Pythagorean triangle with hypotenuse A002144(n).
%C A070079 Consider sequence A002144 of primes congruent to 1 (mod 4) and equal to x^2 + y^2, with y>x given by A002330 and A002331; sequence gives values y^2 - x^2.
%C A070079 Odd legs of primitive Pythagorean triangles with unique (prime) hypotenuse (A002144), sorted on the latter. Corresponding even legs are given by 4*A070151 (or A145046). - _Lekraj Beedassy_, Jul 22 2005
%H A070079 T. D. Noe, <a href="/A070079/b070079.txt">Table of n, a(n) for n=1..1000</a>
%F A070079 a(n)=A079886(n)*A079887(n) - _Benoit Cloitre_, Jan 13 2003
%F A070079 a(n) is the odd positive integer with A080109(n) = A002144(n)^2 = a(n)^2 + (4*A070151(n))^2, in this unique decomposition into positive squares (up to order). See the _Lekraj Beedassy_, comment. - _Wolfdieter Lang_, Jan 13 2015
%e A070079 The following table shows the relationship
%e A070079 between several closely related sequences:
%e A070079 Here p = A002144 = primes == 1 mod 4, p = a^2+b^2 with a < b;
%e A070079 a = A002331, b = A002330, t_1 = ab/2 = A070151;
%e A070079 p^2 = c^2+d^2 with c < d; c = A002366, d = A002365,
%e A070079 t_2 = 2ab = A145046, t_3 = b^2-a^2 = A070079,
%e A070079 with {c,d} = {t_2, t_3}, t_4 = cd/2 = ab(b^2-a^2).
%e A070079 ---------------------------------
%e A070079 .p..a..b..t_1..c...d.t_2.t_3..t_4
%e A070079 ---------------------------------
%e A070079 .5..1..2...1...3...4...4...3....6
%e A070079 13..2..3...3...5..12..12...5...30
%e A070079 17..1..4...2...8..15...8..15...60
%e A070079 29..2..5...5..20..21..20..21..210
%e A070079 37..1..6...3..12..35..12..35..210
%e A070079 41..4..5..10...9..40..40...9..180
%e A070079 53..2..7...7..28..45..28..45..630
%e A070079 .................................
%t A070079 pp = Select[ Range[200] // Prime, Mod[#, 4] == 1 &]; f[p_] := y^2 - x^2 /. ToRules[ Reduce[0 <= x <= y && p == x^2 + y^2, {x, y}, Integers]]; A070079 = f /@ pp (* _Jean-François Alcover_, Jan 15 2015 *)
%Y A070079 Cf. A002144, A002330, A002331, A080109, A070151
%K A070079 easy,nonn
%O A070079 1,1
%A A070079 _Lekraj Beedassy_, May 06 2002
%E A070079 More terms from _Benoit Cloitre_, Jan 13 2003
%E A070079 Edited: Used a different name and moved old name to the comment section. - _Wolfdieter Lang_, Jan 13 2015