A070089 P(n) < P(n+1) where P(n) (A006530) is the largest prime factor of n.
1, 2, 4, 6, 8, 9, 10, 12, 16, 18, 20, 21, 22, 24, 25, 27, 28, 30, 32, 33, 36, 40, 42, 45, 46, 48, 50, 52, 54, 56, 57, 58, 60, 64, 66, 68, 70, 72, 75, 77, 78, 81, 82, 84, 85, 88, 90, 91, 92, 93, 96, 98, 100, 102, 105, 106, 108, 110, 112, 114, 115, 117
Offset: 1
Keywords
References
- H. L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, Amer. Math. Soc., 1996, p. 210.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Régis De La Bretèche, Carl Pomerance and Gérald Tenenbaum, Products of ratios of consecutive integers, The Ramanujan Journal, Vol. 9, No. 1-2 (2005), pp. 131-138, alternative link.
- Paul Erdős and Carl Pomerance, On the largest prime factors of n and n + 1, Aequationes Math., Vol. 17, No. 1 (1978), pp. 311-321, alternative link.
- Xiaodong Lü and Zhiwei Wang, On the largest prime factors of consecutive integers, 2018.
- Zhiwei Wang, On the largest prime factors of consecutive integers in short intervals, Proceedings of the American Mathematical Society, Vol. 145, No. 8 (2017), pp. 3211-3220.
- Zhiwei Wang, Sur les plus grands facteurs premiers d'entiers consécutifs, Mathematika, Vol. 64, No. 2 (2018), pp. 343-379, preprint, arXiv:1706.02980 [math.NT], 2017.
Programs
-
Mathematica
f[n_] := FactorInteger[n][[ -1, 1]]; Select[ Range[125], f[ # ] < f[ # + 1] &]
-
PARI
gpf(n)=if(n<3,n,my(f=factor(n)[,1]); f[#f]) is(n)=gpf(n) < gpf(n+1) \\ Charles R Greathouse IV, Oct 27 2015
Comments