cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070151 a(n) is one fourth of the even leg of the unique primitive Pythagorean triangle with hypotenuse A002144(n).

This page as a plain text file.
%I A070151 #16 Jan 10 2017 05:00:46
%S A070151 1,3,2,5,3,10,7,15,12,20,18,5,15,28,22,35,33,13,45,42,7,15,52,30,8,65,
%T A070151 63,40,17,78,77,72,45,68,63,85,57,10,30,105,102,70,42,95,55,110,105,
%U A070151 133,130,12,92,60,153,152,50,143,75,138,13,65,165,27,117,190,150,187,143,70
%N A070151 a(n) is one fourth of the even leg of the unique primitive Pythagorean triangle with hypotenuse A002144(n).
%C A070151 Consider sequence A002144 of primes congruent to 1 (mod 4) and equal to x^2 + y^2, with y>x given by A002330 and A002331; sequence gives values x*y/2.
%H A070151 T. D. Noe, <a href="/A070151/b070151.txt">Table of n, a(n) for n=1..1000</a>
%F A070151 a(n) = A002330(n+1)*A002331(n+1)/2. - _David Wasserman_, May 12 2003
%F A070151 4*a(n) is the even positive integer with A080109(n) = A002144(n)^2 = A070079(n)^2 + (4*a(n))^2 in this unique decomposition (up to order). See A080109 for references. - _Wolfdieter Lang_, Jan 13 2015
%e A070151 The following table shows the relationship
%e A070151 between several closely related sequences:
%e A070151 Here p = A002144 = primes == 1 mod 4, p = a^2+b^2 with a < b;
%e A070151 a = A002331, b = A002330, t_1 = ab/2 = A070151;
%e A070151 p^2 = c^2+d^2 with c < d; c = A002366, d = A002365,
%e A070151 t_2 = 2ab = A145046, t_3 = b^2-a^2 = A070079,
%e A070151 with {c,d} = {t_2, t_3}, t_4 = cd/2 = ab(b^2-a^2).
%e A070151 ---------------------------------
%e A070151 .p..a..b..t_1..c...d.t_2.t_3..t_4
%e A070151 ---------------------------------
%e A070151 .5..1..2...1...3...4...4...3....6
%e A070151 13..2..3...3...5..12..12...5...30
%e A070151 17..1..4...2...8..15...8..15...60
%e A070151 29..2..5...5..20..21..20..21..210
%e A070151 37..1..6...3..12..35..12..35..210
%e A070151 41..4..5..10...9..40..40...9..180
%e A070151 53..2..7...7..28..45..28..45..630
%e A070151 .................................
%e A070151 n = 7: a(7) = 7, A002144(7) = 53 and 53^2 = 2809 = A070079(7)^2 + (4*a(7))^2 = 45^2 + (4*7)^2 = 2025 + 784. - _Wolfdieter Lang_, Jan 13 2015
%Y A070151 Cf. A002144, A002330, A002331, A070079, A080109, A144954, A144960.
%K A070151 easy,nonn
%O A070151 1,2
%A A070151 _Lekraj Beedassy_, May 06 2002
%E A070151 Edited. New name, moved the old one to the comment section. - _Wolfdieter Lang_, Jan 13 2015