This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A070178 #21 Aug 18 2021 15:29:17 %S A070178 1,1,0,-1,-1,-1,-1,-1,0,1,1 %N A070178 Coefficients of Lehmer's polynomial. %C A070178 Mahler's measure M(f) of a polynomial f is defined to be the absolute value of the product of those roots of f which lie outside the unit disk, multiplied by the absolute value of the coefficient of the leading term of f. Of all polynomials with integer coefficients, Lehmer's 10th degree polynomial produces the smallest known M(f), given in A073011. - _Hugo Pfoertner_, Mar 12 2006 %D A070178 H. L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, Amer. Math. Soc., 1996, p. 205. %H A070178 D. H. Lehmer, <a href="http://www.jstor.org/stable/1968172">Factorization of certain cyclotomic functions</a>, Annals of Math. vol. 34, 1933, pp. 461-479. %H A070178 Douglas Lind, <a href="https://arxiv.org/abs/math/0303279">Lehmer's Problem for compact abelian groups</a>, arXiv:math/0303279 [math.NT], 2003-2014. %H A070178 Michael Mossinghoff, <a href="https://web.archive.org/web/20131027202648/http://oldweb.cecm.sfu.ca/~mjm/Lehmer/">Lehmer's Problem</a>. %H A070178 Charles L. Samuels, <a href="http://arxiv.org/abs/1408.4165">The infimum in the metric Mahler measure</a>, arXiv:1408.4165 [math.NT], 2014 (see page 2). %e A070178 Polynomial is 1+x-x^3-x^4-x^5-x^6-x^7+x^9+x^10. %Y A070178 Cf. A073011 (Mahler's measure of Lehmer's polynomial). %K A070178 sign,easy,fini,full %O A070178 0,1 %A A070178 _N. J. A. Sloane_, May 13 2002