This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A070198 #68 Feb 16 2025 08:32:46 %S A070198 0,1,5,11,59,59,419,839,2519,2519,27719,27719,360359,360359,360359, %T A070198 720719,12252239,12252239,232792559,232792559,232792559,232792559, %U A070198 5354228879,5354228879,26771144399,26771144399,80313433199,80313433199 %N A070198 Smallest nonnegative number m such that m == i (mod i+1) for all 1 <= i <= n. %C A070198 Also, smallest k such that, for 0 <= i < n, i+1 divides k-i. %C A070198 Suggested by Chinese Remainder Theorem. This sequence can generate others: smallest b(n) such that b(n) == i (mod (i+2)), 1 <= i <= n, gives b(1)=1 and b(n) = a(n+1)-1 for n > 1; smallest c(n) such that c(n) == i (mod (i+3)), 1 <= i <= n, gives c(1)=1, c(2)=17 and c(n) = a(n+2) - 2 for n > 2; smallest d(n) such that c(n) == i (mod (i+4)), 1 <= i <= n, gives d(1)=1, d(2)=26, d(3)=206 and d(n) = a(n+3) - 3 for n > 3, etc. %C A070198 A208768(n) occurs A057820(n) times. - _Reinhard Zumkeller_, Mar 01 2012 %C A070198 From _Kival Ngaokrajang_, Oct 10 2013: (Start) %C A070198 A070198(n-1) is m such that max(Sum_{i=1..n} m (mod i)) = A000217(n-1). %C A070198 Example for n = 3: %C A070198 m\i = 1 2 3 sum %C A070198 1 0 1 1 2 %C A070198 2 0 0 2 2 %C A070198 3 0 1 0 1 %C A070198 4 0 0 1 1 %C A070198 5 0 1 2 3 <--max remainder sum = 3 = A000217(2) %C A070198 6 0 0 0 0 first occurs at m = 5 = A070198(2) %C A070198 (End) %H A070198 Reinhard Zumkeller, <a href="/A070198/b070198.txt">Table of n, a(n) for n = 0..1000</a> %H A070198 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ChineseRemainder Theorem.html">Chinese Remainder Theorem</a> %H A070198 Wikipedia, <a href="http://en.wikipedia.org/wiki/Chinese_remainder_theorem">Chinese remainder theorem</a> %H A070198 <a href="/index/Lc#lcm">Index entries for sequences related to lcm's</a> %F A070198 a(n) = lcm(1, 2, 3, ..., n+1) - 1 = A003418(n+1) - 1. %e A070198 a(3) = 11 because 11 == 1 (mod 2), 11 == 2 (mod 3) and 11 == 3 (mod 4). %p A070198 seq(ilcm($1..n) - 1, n=1..100); # _Robert Israel_, Nov 03 2014 %t A070198 f[n_] := ChineseRemainder[ Range[0, n - 1], Range[n]]; Array[f, 28] (* or *) %t A070198 f[n_] := LCM @@ Range@ n - 1; Array[f, 28] (* _Robert G. Wilson v_, Oct 30 2014 *) %o A070198 (Haskell) %o A070198 a070198 n = a070198_list !! n %o A070198 a070198_list = map (subtract 1) $ scanl lcm 1 [2..] %o A070198 -- _Reinhard Zumkeller_, Mar 01 2012 %o A070198 (Magma) [Exponent(SymmetricGroup(n))-1 : n in [1..30]]; /* _Vincenzo Librandi_, Oct 31 2014 - after _Arkadiusz Wesolowski_ in A003418 */ %o A070198 (Python) %o A070198 from math import lcm %o A070198 def A070198(n): return lcm(*range(1,n+2))-1 # _Chai Wah Wu_, May 02 2023 %Y A070198 Cf. A053664, A072562. %Y A070198 Cf. A057825 (indices of primes). - _R. J. Mathar_, Jan 14 2009 %Y A070198 Cf. A116151. - _Zak Seidov_, Mar 11 2014 %K A070198 easy,nonn %O A070198 0,3 %A A070198 _Benoit Cloitre_, May 06 2002 %E A070198 Edited by _N. J. A. Sloane_, Nov 18 2007, at the suggestion of _Max Alekseyev_