cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070209 Numbers n such that [A070080(n), A070081(n), A070082(n)] is an integer triangle with integer inradius.

This page as a plain text file.
%I A070209 #16 Feb 16 2025 08:32:46
%S A070209 17,116,212,269,368,370,493,561,587,659,850,1204,1297,1582,1599,1629,
%T A070209 1920,1988,2115,2352,2555,2574,2774,2778,3251,3473,3746,3751,4286,
%U A070209 4298,4307,4313,4319,4330,4370,4406,5008,5251
%N A070209 Numbers n such that [A070080(n), A070081(n), A070082(n)] is an integer triangle with integer inradius.
%D A070209 Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32.  Solution published in Vol. 16, Issue 2, November 2008, p. 32.
%H A070209 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Incircle.html">Incircle</a>.
%H A070209 R. Zumkeller, <a href="/A070080/a070080.txt">Integer-sided triangles</a>
%e A070209 a(3)=212: [A070080(212), A070081(212), A070082(212)] = [5,12,13], for s = A070083(212)/2 = (5+12+13)/2 = 15: inradius = sqrt((s-5)*(s-12)*(s-13)/s) = sqrt(10*3*2/15) = sqrt(4) = 2; therefore A070200(212)=2. [Corrected by _Rick L. Shepherd_, May 15 2008]
%Y A070209 Cf. A070142, A070201, A051516.
%K A070209 nonn
%O A070209 1,1
%A A070209 _Reinhard Zumkeller_, May 05 2002