cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070214 Maximal number of occupied cells in all monotonic matrices of order n.

This page as a plain text file.
%I A070214 #33 Feb 16 2025 08:32:46
%S A070214 1,2,5,8,11,14,19,23,28,32,38,43,49,55
%N A070214 Maximal number of occupied cells in all monotonic matrices of order n.
%C A070214 A monotonic matrix of order n is an n X n matrix in which every cell contains 0 or 1 numbers from the set {1...n} subject to 3 conditions:
%C A070214 (1)  The filled-in entries in each row are strictly increasing;
%C A070214 (2)  The filled-in entries in each column are strictly decreasing;
%C A070214 (3)  For two filled-in cells with same entry, the one further right is higher (the positive slope condition).
%C A070214 From Rob Pratt: The problem can be formulated as a maximum independent set problem in a graph with n^3 nodes (i, j, k) in {1, 2, ..., n}^3. If node (i, j, k) appears in the solution, the interpretation is that cell (i, j) should contain k. The arcs, which indicate conflicting choices, are as follows:
%C A070214 Arc joining (i1, j1, k1) and (i2, j2, k2) if:
%C A070214 [rows increasing] i1 = i2 and ((j1 < j2 and k1 >= k2) or (j1 > j2 and k1 <= k2)).
%C A070214 [columns decreasing] j1 = j2 and ((i1 < i2 and k1 <= k2) or (i1 > i2 and k1 >= k2)).
%C A070214 [one color per cell] i1 = i2 and j1 = j2 and k1 <> k2.
%C A070214 [positive slope] k1 = k2 and i1 <> i2 and (j2 - j1) / (i2 - i1) > 0.
%H A070214 Boris Aronov, Vida Dujmović, Pat Morin, Aurélien Ooms, Luís Fernando Schultz Xavier da Silveira, <a href="https://arxiv.org/abs/1706.10193">More Turán-Type Theorems for Triangles in Convex Point Sets</a>, arXiv:1706.10193 [math.CO], 2017.
%H A070214 W. Hamaker and S. K. Stein, <a href="https://doi.org/10.1109/TIT.1984.1056868">Combinatorial packing of R^3 by certain error spheres</a>, IEEE Trans. Information Theory, 30 (No. 2, 1984), 364-368.
%H A070214 Patric R. J. Östergård, and Antti Pöllänen, <a href="https://doi.org/10.1007/s00454-018-0012-2">New Results on Tripod Packings</a>, Discrete & Computational Geometry 61.2 (2019): 271-284
%H A070214 S. K. Stein and S. Szabo, <a href="https://www.maa.org/press/ebooks/algebra-and-tiling">Algebra and Tiling</a>, MAA Carus Monograph 25, 1994, page 95.
%H A070214 Alexandre Tiskin, <a href="https://doi.org/10.1007/3-540-44968-X_27">Tripods do not pack densely</a>, Lecture Notes in Computer Science, 1858 (2000), 272-280.
%H A070214 Alexandre Tiskin, <a href="https://doi.org/10.1016/j.disc.2004.12.028">Packing tripods: narrowing the density gap</a>, Discrete Math., 307 (2007), 1973-1981.
%H A070214 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MonotonicMatrix.html">Monotonic Matrix</a>
%F A070214 a(r*s) >= a(r)*a(s); if a(n) = n^e(n) then L := lim_{n->infinity} e(n) exists and is in the range 1.513 <= L <= 2.
%F A070214 Tiskin showed that a(n) = o(n^2).
%e A070214 a(3) >= 5 from this matrix:
%e A070214   2 - 3
%e A070214   - - 1
%e A070214   1 3 -
%e A070214 a(5) >= 11 from this matrix:
%e A070214   - - 4 - 5
%e A070214   4 - - 5 -
%e A070214   - - 1 2 3
%e A070214   3 5 - - -
%e A070214   1 2 - - -
%e A070214 Dean Hickerson found the following matrix, which improves the lower bound for a(8) to 23: (This is now known to be optimal)
%e A070214   - - 2 - - 4 7 8
%e A070214   - - 1 7 8 - - -
%e A070214   7 8 - - - - - -
%e A070214   - 2 - 4 - - - 6
%e A070214   - 1 - - - 3 6 -
%e A070214   4 - - - 6 - - -
%e A070214   2 - - - 3 - - 5
%e A070214   1 - - 3 - - 5 -
%e A070214 Paul Jungeblut improves the lower bound for a(11) to 38 with this matrix.
%e A070214   -- --  8 -- -- --  9 -- -- -- 11
%e A070214   --  8 -- -- --  9 -- -- -- -- 10
%e A070214    8 -- -- --  9 -- -- -- 10 11 --
%e A070214   -- -- -- -- -- -- -- --  4  5  7
%e A070214   --  4 -- -- --  5  7 11 -- -- --
%e A070214   -- -- -- -- --  1 -- --  2  3  6
%e A070214    4 -- -- --  5 --  6 10 -- -- --
%e A070214   -- -- -- --  1 --  2  3 -- -- --
%e A070214    2  3  7 11 -- -- -- -- -- -- --
%e A070214   --  1  6 10 -- -- -- -- -- -- --
%e A070214    1 --  5  9 -- -- -- -- -- -- --
%Y A070214 Cf. A086976.
%K A070214 nonn,more,hard,nice
%O A070214 1,2
%A A070214 _N. J. A. Sloane_, Jul 24 2003, Jun 19 2007
%E A070214 a(1)-a(5) computed by K. Joy. a(6) = 14 was established by Szabo.
%E A070214 Jul 27 2003 - Aug 23 2003: _Rob Pratt_ has used integer programming to confirm the values for n <= 6 and has shown that a(7) = 19, 23 <= a(8) <= 28, 28 <= a(9) <= 42 and 32 <= a(10) <= 62.
%E A070214 Extended to a(14) from Tiskin (2007), who gives a(15) >= 61, a(16) >= 65.
%E A070214 a(11) corrected by _Paul Jungeblut_, Jul 09 2020