A070228 Number of perfect powers (A001597) not exceeding 2^n.
1, 1, 2, 3, 5, 8, 11, 16, 23, 31, 42, 58, 82, 114, 156, 217, 299, 417, 583, 814, 1136, 1589, 2224, 3116, 4369, 6136, 8623, 12128, 17064, 24023, 33839, 47689, 67227, 94805, 133738, 188710, 266351, 376019, 530941, 749820, 1059097, 1496144, 2113802, 2986770, 4220666
Offset: 0
Examples
How many powers are there not exceeding 2^4?: 1, 4, 8, 9, 16. Hence a(4) = 5. a(22)=2224: there are 2224 powers not exceeding 2^22.
Links
- Amiram Eldar, Table of n, a(n) for n = 0..6643 (terms 0..1000 from Robert G. Wilson v)
Programs
-
Mathematica
f[n_] := 1 - Sum[ MoebiusMu[x]*Floor[2^(n/x) - 1], {x, 2, n}]; Array[f, 44, 0] (* Robert G. Wilson v, Jan 20 2015 *)
-
PARI
a(n) = 1 - sum(k=2, n, moebius(k)*(sqrtnint(2^n,k)-1));
-
Python
from sympy import mobius, integer_nthroot def A070228(n): return int(1+sum(mobius(x)*(1-integer_nthroot(1<
Chai Wah Wu, Aug 13 2024
Formula
a(n) = 1 - Sum_{k=2..n} Moebius(k)*floor(2^(n/k)-1). - Robert G. Wilson v, Jan 20 2015
a(n) = A188951(n) + 1 for n > 1. - Amiram Eldar, May 19 2022
Extensions
a(39)-a(44) from Alex Ratushnyak, Jan 02 2014