cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070228 Number of perfect powers (A001597) not exceeding 2^n.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 11, 16, 23, 31, 42, 58, 82, 114, 156, 217, 299, 417, 583, 814, 1136, 1589, 2224, 3116, 4369, 6136, 8623, 12128, 17064, 24023, 33839, 47689, 67227, 94805, 133738, 188710, 266351, 376019, 530941, 749820, 1059097, 1496144, 2113802, 2986770, 4220666
Offset: 0

Views

Author

Donald S. McDonald, May 14 2002

Keywords

Examples

			How many powers are there not exceeding 2^4?: 1, 4, 8, 9, 16. Hence a(4) = 5.
a(22)=2224: there are 2224 powers not exceeding 2^22.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := 1 - Sum[ MoebiusMu[x]*Floor[2^(n/x) - 1], {x, 2, n}]; Array[f, 44, 0] (* Robert G. Wilson v, Jan 20 2015 *)
  • PARI
    a(n) = 1 - sum(k=2, n, moebius(k)*(sqrtnint(2^n,k)-1));
    
  • Python
    from sympy import mobius, integer_nthroot
    def A070228(n): return int(1+sum(mobius(x)*(1-integer_nthroot(1<Chai Wah Wu, Aug 13 2024

Formula

a(n) = 1 - Sum_{k=2..n} Moebius(k)*floor(2^(n/k)-1). - Robert G. Wilson v, Jan 20 2015
a(n) = A188951(n) + 1 for n > 1. - Amiram Eldar, May 19 2022

Extensions

a(39)-a(44) from Alex Ratushnyak, Jan 02 2014