This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A070253 #27 Oct 13 2024 13:07:15 %S A070253 1,2,3,10,18,24,65,76,100,192,205,1000,1748,1908,2366,2967,5732,10000, %T A070253 18992,20565,100000,174602,174748,179318,243064,293787,552102,1000000, %U A070253 1868288,2967033,9200157,10000000,22765896,31552660,93809717,100000000 %N A070253 Numbers k such that k^2 - 1 is a palindrome. %C A070253 Every palindrome of the form h^2-1 is of the form m*(m+2) (easy to prove by replacing h by m+1). In fact this is equal to A028503 + 1. - _Patrick De Geest_, May 09 2002 %H A070253 Giovanni Resta, <a href="/A070253/b070253.txt">Table of n, a(n) for n = 1..53</a> %H A070253 P. De Geest, <a href="https://www.worldofnumbers.com/quapron.htm">Palindromic quasipronic numbers of the form n(n+2)</a> %F A070253 a(n) = A028503(n) + 1. - _Giovanni Resta_, Aug 29 2018 %t A070253 Do[ If[ a = IntegerDigits[n^2 - 1]; a == Reverse[a], Print[n]], {n, 1, 10^8/4}] %t A070253 Select[Range[10^8],PalindromeQ[#^2-1]&] (* _Harvey P. Dale_, Oct 13 2024 *) %o A070253 (PARI) intreverse(n)=local(d,rev); rev=0; while(n>0,d=divrem(n,10); n=d[1]; rev=10*rev+d[2]); rev %o A070253 for(n=1,100000000,q=n*n-1; if(q==intreverse(q),print1(n,","))) %Y A070253 Cf. A027719, A027720, A070254, A028503. %K A070253 nonn,base %O A070253 1,2 %A A070253 _Amarnath Murthy_, May 06 2002 %E A070253 Edited by _Jason Earls_, _Klaus Brockhaus_ and _Robert G. Wilson v_, May 08 2002