A070261 4th diagonal of triangle defined in A051537.
4, 10, 2, 28, 40, 6, 70, 88, 12, 130, 154, 20, 208, 238, 30, 304, 340, 42, 418, 460, 56, 550, 598, 72, 700, 754, 90, 868, 928, 110, 1054, 1120, 132, 1258, 1330, 156, 1480, 1558, 182, 1720, 1804, 210, 1978, 2068, 240, 2254, 2350, 272, 2548, 2650, 306, 2860
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,3,0,0,-3,0,0,1).
Crossrefs
Cf. A051537.
Programs
-
Mathematica
Table[ LCM[i + 3, i] / GCD[i + 3, i], {i, 1, 60}]
-
PARI
Vec(2*x*(2 + 5*x + x^2 + 8*x^3 + 5*x^4 - x^6 - x^7) / ((1 - x)^3*(1 + x + x^2)^3) + O(x^60)) \\ Colin Barker, Mar 27 2017
Formula
a(n) = lcm(n + 3, n) / gcd(n + 3, n).
From Colin Barker, Mar 27 2017: (Start)
G.f.: 2*x*(2 + 5*x + x^2 + 8*x^3 + 5*x^4 - x^6 - x^7) / ((1 - x)^3*(1 + x + x^2)^3).
a(n) = 3*a(n-3) - 3*a(n-6) + a(n-9) for n>9.
(End)
From Amiram Eldar, Oct 08 2023: (Start)
Sum_{n>=1} 1/a(n) = 3/2.
Sum_{n>=1} (-1)^n/a(n) = 22*log(2)/9 - 7/6.
Sum_{k=1..n} a(k) ~ (19/81) * n^3. (End)
Extensions
Edited by Robert G. Wilson v, May 10 2002