cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070261 4th diagonal of triangle defined in A051537.

Original entry on oeis.org

4, 10, 2, 28, 40, 6, 70, 88, 12, 130, 154, 20, 208, 238, 30, 304, 340, 42, 418, 460, 56, 550, 598, 72, 700, 754, 90, 868, 928, 110, 1054, 1120, 132, 1258, 1330, 156, 1480, 1558, 182, 1720, 1804, 210, 1978, 2068, 240, 2254, 2350, 272, 2548, 2650, 306, 2860
Offset: 1

Views

Author

Amarnath Murthy, May 09 2002

Keywords

Crossrefs

Cf. A051537.

Programs

  • Mathematica
    Table[ LCM[i + 3, i] / GCD[i + 3, i], {i, 1, 60}]
  • PARI
    Vec(2*x*(2 + 5*x + x^2 + 8*x^3 + 5*x^4 - x^6 - x^7) / ((1 - x)^3*(1 + x + x^2)^3) + O(x^60)) \\ Colin Barker, Mar 27 2017

Formula

a(n) = lcm(n + 3, n) / gcd(n + 3, n).
From Colin Barker, Mar 27 2017: (Start)
G.f.: 2*x*(2 + 5*x + x^2 + 8*x^3 + 5*x^4 - x^6 - x^7) / ((1 - x)^3*(1 + x + x^2)^3).
a(n) = 3*a(n-3) - 3*a(n-6) + a(n-9) for n>9.
(End)
From Amiram Eldar, Oct 08 2023: (Start)
Sum_{n>=1} 1/a(n) = 3/2.
Sum_{n>=1} (-1)^n/a(n) = 22*log(2)/9 - 7/6.
Sum_{k=1..n} a(k) ~ (19/81) * n^3. (End)

Extensions

Edited by Robert G. Wilson v, May 10 2002