This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A070262 #28 Oct 08 2023 04:45:02 %S A070262 5,3,21,2,45,15,77,6,117,35,165,12,221,63,285,20,357,99,437,30,525, %T A070262 143,621,42,725,195,837,56,957,255,1085,72,1221,323,1365,90,1517,399, %U A070262 1677,110,1845,483,2021,132,2205,575,2397,156,2597,675,2805,182,3021,783 %N A070262 5th diagonal of triangle defined in A051537. %H A070262 Colin Barker, <a href="/A070262/b070262.txt">Table of n, a(n) for n = 1..1000</a> %H A070262 <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,3,0,0,0,-3,0,0,0,1). %F A070262 a(n) = lcm(n + 4, n) / gcd(n + 4, n). %F A070262 From _Colin Barker_, Mar 27 2017: (Start) %F A070262 G.f.: x*(5 + 3*x + 21*x^2 + 2*x^3 + 30*x^4 + 6*x^5 + 14*x^6 - 3*x^8 - x^9 - 3*x^10) / ((1 - x)^3*(1 + x)^3*(1 + x^2)^3). %F A070262 a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12) for n>12. (End) %F A070262 From _Luce ETIENNE_, May 10 2018: (Start) %F A070262 a(n) = n*(n+4)*4^((5*(n mod 4)^3 - 24*(n mod 4)^2 + 31*(n mod 4)-12)/6). %F A070262 a(n) = n*(n+4)*(37-27*cos(n*Pi)-6*cos(n*Pi/2))/64. (End) %F A070262 From _Amiram Eldar_, Oct 08 2023: (Start) %F A070262 Sum_{n>=1} 1/a(n) = 11/6. %F A070262 Sum_{n>=1} (-1)^n/a(n) = 7/6. %F A070262 Sum_{k=1..n} a(k) ~ (37/192) * n^3. (End) %t A070262 Table[ LCM[i + 4, i] / GCD[i + 4, i], {i, 1, 60}] %t A070262 LinearRecurrence[{0,0,0,3,0,0,0,-3,0,0,0,1},{5,3,21,2,45,15,77,6,117,35,165,12},90] (* _Harvey P. Dale_, Jul 13 2019 *) %o A070262 (PARI) Vec(x*(5 + 3*x + 21*x^2 + 2*x^3 + 30*x^4 + 6*x^5 + 14*x^6 - 3*x^8 - x^9 - 3*x^10) / ((1 - x)^3*(1 + x)^3*(1 + x^2)^3) + O(x^60)) \\ _Colin Barker_, Mar 27 2017 %o A070262 (PARI) a(n) = lcm(n+4,n)/gcd(n+4,n); \\ _Altug Alkan_, Sep 20 2018 %o A070262 (Magma) [LCM(n + 4, n)/GCD(n + 4, n): n in [1..50]]; // _G. C. Greubel_, Sep 20 2018 %Y A070262 Cf. A061037. [From _R. J. Mathar_, Sep 29 2008] %Y A070262 Cf. A010873, A051537. %Y A070262 Cf. A000466, A002378, A003185, A085027. %K A070262 nonn,easy %O A070262 1,1 %A A070262 _Amarnath Murthy_, May 09 2002 %E A070262 Edited by _Robert G. Wilson v_, May 10 2002