This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A070272 #13 Feb 11 2014 19:05:28 %S A070272 275,295,2995,299995,2999995,278736495,299999995,299999999995 %N A070272 Numbers n such that reverse(n) = phi(n) + sigma(n). %C A070272 For n>0 5*(6*10^A056716(n)-1) is in this sequence. In fact if p = 6*10^n-1 is prime and n>0 (p>5) then m = 5*p is in the sequence. That's because phi(m) = phi(5*p) = 4*(6*10^n-2) = 24*10^n-8 and sigma(m)= 6*6*10^n, so phi(m) + sigma(m) = 6*10^(n+1)-8 = 5.(9)(n).2 = reversal(2.(9)(n).5) = reversal (3*10^(n+1)-5) = reversal(m)(dot between numbers means concatenation and "(9)(n)" means number of 9's is n). For example 299999995 is in the sequence because 6*10^7-1 is prime and 299999995 = 5*(6*10^7-1); 299999999995 is in sequence because 6*10^10-1 is prime and 299999999995 = 5*(6*10^10-1). Next term is greater than 80000000. - _Farideh Firoozbakht_, Jan 11 2005 %C A070272 Next term is greater than 10^9. - _Farideh Firoozbakht_, Jan 23 2005 %C A070272 a(9) > 10^13. - _Giovanni Resta_, Feb 08 2014 %e A070272 Reverse(275) = 572 = 200 + 372 = phi(275) + sigma(275). %t A070272 Select[Range[10^6], FromDigits[Reverse[IntegerDigits[ # ]]] == EulerPhi[ # ] + DivisorSigma[1, # ] &] %Y A070272 Cf. A056716, A102284. %K A070272 base,nonn %O A070272 1,1 %A A070272 _Joseph L. Pe_, May 12 2002 %E A070272 One more term from _Farideh Firoozbakht_, Jan 11 2005 %E A070272 More terms from _Farideh Firoozbakht_, Jan 23 2005 %E A070272 a(8) from _Giovanni Resta_, Nov 03 2012