This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A070321 #43 Jul 26 2025 08:06:56 %S A070321 1,2,3,3,5,6,7,7,7,10,11,11,13,14,15,15,17,17,19,19,21,22,23,23,23,26, %T A070321 26,26,29,30,31,31,33,34,35,35,37,38,39,39,41,42,43,43,43,46,47,47,47, %U A070321 47,51,51,53,53,55,55,57,58,59,59,61,62,62,62,65,66,67,67,69,70,71,71 %N A070321 Greatest squarefree number <= n. %C A070321 a(n) = Max( core(k) : k=1,2,3,...,n ) where core(x) is the squarefree part of x (the smallest integer such that x*core(x) is a square). %H A070321 Reinhard Zumkeller, <a href="/A070321/b070321.txt">Table of n, a(n) for n = 1..10000</a> %H A070321 Mayank Pandey, <a href="https://arxiv.org/abs/2401.13981">Squarefree numbers in short intervals</a>, arXiv preprint (2024). arXiv:2401.13981 [math.NT] %F A070321 a(n) = n - o(n^(1/5)) by a result of Pandey. - _Charles R Greathouse IV_, Dec 04 2024 %F A070321 a(n) = A005117(A013928(n+1)). - _Ridouane Oudra_, Jul 26 2025 %e A070321 From _Gus Wiseman_, Dec 10 2024: (Start) %e A070321 The squarefree numbers <= n are the following columns, with maxima a(n): %e A070321 1 2 3 3 5 6 7 7 7 10 11 11 13 14 15 15 %e A070321 1 2 2 3 5 6 6 6 7 10 10 11 13 14 14 %e A070321 1 1 2 3 5 5 5 6 7 7 10 11 13 13 %e A070321 1 2 3 3 3 5 6 6 7 10 11 11 %e A070321 1 2 2 2 3 5 5 6 7 10 10 %e A070321 1 1 1 2 3 3 5 6 7 7 %e A070321 1 2 2 3 5 6 6 %e A070321 1 1 2 3 5 5 %e A070321 1 2 3 3 %e A070321 1 2 2 %e A070321 1 1 %e A070321 (End) %p A070321 A070321 := proc(n) %p A070321 local a; %p A070321 for a from n by -1 do %p A070321 if issqrfree(a) then %p A070321 return a; %p A070321 end if; %p A070321 end do: %p A070321 end proc: %p A070321 seq(A070321(n),n=1..100) ; # _R. J. Mathar_, May 25 2023 %t A070321 a[n_] :=For[ k = n, True, k--, If[ SquareFreeQ[k], Return[k]]]; Table[a[n], {n, 1, 100}] (* _Jean-François Alcover_, Mar 27 2013 *) %t A070321 gsfn[n_]:=Module[{k=n},While[!SquareFreeQ[k],k--];k]; Array[gsfn,80] (* _Harvey P. Dale_, Mar 27 2013 *) %o A070321 (PARI) a(n) = while (! issquarefree(n), n--); n; \\ _Michel Marcus_, Mar 18 2017 %o A070321 (Python) %o A070321 from itertools import count %o A070321 from sympy import factorint %o A070321 def A070321(n): return next(m for m in count(n,-1) if max(factorint(m).values(),default=0)<=1) # _Chai Wah Wu_, Dec 04 2024 %Y A070321 Cf. A007947, A076260. %Y A070321 Cf. A081217, A081218, A081210. %Y A070321 The distinct terms are A005117 (the squarefree numbers). %Y A070321 The opposite version is A067535, differences A378087. %Y A070321 The run-lengths are A076259. %Y A070321 Restriction to the primes is A112925; see A378038, A112926, A378037. %Y A070321 For nonsquarefree we have A378033; see A120327, A378036, A378032, A377783. %Y A070321 First differences are A378085. %Y A070321 Subtracting each term from n gives A378619. %Y A070321 A013929 lists the nonsquarefree numbers, differences A078147. %Y A070321 A061398 counts squarefree numbers between primes, zeros A068360. %Y A070321 A061399 counts nonsquarefree numbers between primes, zeros A068361. %Y A070321 Cf. A007674, A013928, A053797, A053806, A072284, A073247, A112929, A240473. %K A070321 easy,nonn %O A070321 1,2 %A A070321 _Benoit Cloitre_, May 11 2002 %E A070321 New description from _Reinhard Zumkeller_, Oct 03 2002