cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070338 a(n) = 2^n mod 33.

This page as a plain text file.
%I A070338 #22 Dec 07 2019 12:18:23
%S A070338 1,2,4,8,16,32,31,29,25,17,1,2,4,8,16,32,31,29,25,17,1,2,4,8,16,32,31,
%T A070338 29,25,17,1,2,4,8,16,32,31,29,25,17,1,2,4,8,16,32,31,29,25,17,1,2,4,8,
%U A070338 16,32,31,29,25,17,1,2,4,8,16,32,31,29,25,17,1,2,4,8
%N A070338 a(n) = 2^n mod 33.
%C A070338 The sequence has a cycle of length 10, which is the maximum possible length for a sequence of powers mod 33. - _Alonso del Arte_, Jan 12 2013
%H A070338 G. C. Greubel, <a href="/A070338/b070338.txt">Table of n, a(n) for n = 0..1000</a>
%H A070338 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,-1,1).
%F A070338 From _G. C. Greubel_, Mar 13 2016: (Start)
%F A070338 a(n) = a(n-10).
%F A070338 a(n) = a(n-1) - a(n-5) + a(n-6). (End)
%t A070338 Table[Mod[2^n, 33], {n, 0, 79}] (* _Alonso del Arte_, Jan 12 2013 *)
%t A070338 PowerMod[2, Range[0, 50], 33] (* _G. C. Greubel_, Mar 13 2016 *)
%t A070338 LinearRecurrence[{1,0,0,0,-1,1},{1,2,4,8,16,32},90] (* _Harvey P. Dale_, Jun 26 2017 *)
%o A070338 (Sage) [power_mod(2,n,33)for n in range(0,74)] # _Zerinvary Lajos_, Nov 03 2009
%o A070338 (PARI) a(n)=lift(Mod(2,33)^n) \\ _Charles R Greathouse IV_, Mar 22 2016
%o A070338 (GAP) List([0..83],n->PowerMod(2,n,33)); # _Muniru A Asiru_, Jan 30 2019
%K A070338 nonn,easy
%O A070338 0,2
%A A070338 _N. J. A. Sloane_, May 12 2002