This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A070550 #62 Jul 16 2024 19:20:44 %S A070550 1,2,2,3,6,10,15,24,40,65,104,168,273,442,714,1155,1870,3026,4895, %T A070550 7920,12816,20737,33552,54288,87841,142130,229970,372099,602070, %U A070550 974170,1576239,2550408,4126648,6677057,10803704,17480760,28284465,45765226 %N A070550 a(n) = a(n-1) + a(n-3) + a(n-4), starting with a(0..3) = 1, 2, 2, 3. %C A070550 Shares some properties with Fibonacci sequence. %C A070550 The sum of any two alternating terms (terms separated by one other term) produces a Fibonacci number (e.g., 2+6=8, 3+10=13, 24+65=89). The product of any two consecutive or alternating Fibonacci terms produces a term from this sequence (e.g., 5*8 = 40, 13*5 = 65, 21*8 = 168). %C A070550 In Penney's game (see A171861), the number of ways that HTH beats HHH on flip 3,4,5,... - _Ed Pegg Jr_, Dec 02 2010 %C A070550 The Ca2 sums (see A180662 for the definition of these sums) of triangle A035607 equal the terms of this sequence. - _Johannes W. Meijer_, Aug 05 2011 %H A070550 Reinhard Zumkeller, <a href="/A070550/b070550.txt">Table of n, a(n) for n = 0..1000</a> %H A070550 David Applegate, Marc LeBrun and N. J. A. Sloane, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Sloane/carry2.html">Dismal Arithmetic</a>, J. Int. Seq., Vol. 14 (2011), Article # 11.9.8. %H A070550 Andreas M. Hinz and Paul K. Stockmeyer, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL25/Hinz/hinz5.html">Precious Metal Sequences and Sierpinski-Type Graphs</a>, J. Integer Seq., Vol 25 (2022), Article 22.4.8. %H A070550 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,1,1). %F A070550 a(n) = F(floor(n/2)+1)*F(ceiling(n/2)+2), with F(n) = A000045(n). - _Ralf Stephan_, Apr 14 2004 %F A070550 G.f.: (1+x)/(1-x-x^3-x^4) = (1+x)/((1+x^2)*(1-x-x^2)) %F A070550 a(n) = A126116(n+4) - F(n+3). - _Johannes W. Meijer_, Aug 05 2011 %F A070550 a(n) = (1+3*i)/10*(-i)^n + (1-3*i)/10*(i)^n + (2+sqrt(5))/5*((1+sqrt(5))/2)^n + (2-sqrt(5))/5*((1-sqrt(5))/2)^n, where i = sqrt(-1). - _Sergei N. Gladkovskii_, Jul 16 2013 %F A070550 a(n+1)*a(n+3) = a(n)*a(n+2) + a(n+1)*a(n+2) for all n in Z. - _Michael Somos_, Jan 19 2014 %F A070550 Sum_{n>=1} 1/a(n) = A290565. - _Amiram Eldar_, Feb 17 2021 %e A070550 G.f.: 1 + 2*x + 2*x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 15*x^6 + 24*x^7 + ... %p A070550 with(combinat): A070550 := proc(n): fibonacci(floor(n/2)+1) * fibonacci(ceil(n/2)+2) end: seq(A070550(n),n=0..37); # _Johannes W. Meijer_, Aug 05 2011 %t A070550 LinearRecurrence[{1, 0, 1, 1}, {1, 2, 2, 3}, 40] (* _Jean-François Alcover_, Jan 27 2018 *) %t A070550 nxt[{a_,b_,c_,d_}]:={b,c,d,a+b+d}; NestList[nxt,{1,2,2,3},40][[;;,1]] (* _Harvey P. Dale_, Jul 16 2024 *) %o A070550 (Haskell) %o A070550 a070550 n = a070550_list !! n %o A070550 a070550_list = 1 : 2 : 2 : 3 : %o A070550 zipWith (+) a070550_list %o A070550 (zipWith (+) (tail a070550_list) (drop 3 a070550_list)) %o A070550 -- _Reinhard Zumkeller_, Aug 06 2011 %o A070550 (PARI) A070550(n) = fibonacci(n\2+1)*fibonacci((n+5)\2) \\ _M. F. Hasler_, Aug 06 2011 %o A070550 (PARI) x='x+O('x^100); Vec((1+x)/(1-x-x^3-x^4)) \\ _Altug Alkan_, Dec 24 2015 %Y A070550 Bisections: A001654, A059929. %Y A070550 Cf. A049853, A290565. %K A070550 easy,nonn %O A070550 0,2 %A A070550 Sreyas Srinivasan (sreyas_srinivasan(AT)hotmail.com), May 02 2002