A070683 Smallest m in range 1..phi(2n+1) such that 12^m == 1 mod 2n+1, or 0 if no such number exists.
0, 0, 4, 6, 0, 1, 2, 0, 16, 6, 0, 11, 20, 0, 4, 30, 0, 12, 9, 0, 40, 42, 0, 23, 42, 0, 52, 4, 0, 29, 15, 0, 4, 66, 0, 35, 36, 0, 6, 26, 0, 41, 16, 0, 8, 6, 0, 12, 16, 0, 100, 102, 0, 53, 54, 0, 112, 44, 0, 48, 11, 0, 100, 126, 0, 65, 6, 0, 136, 138, 0, 2, 4, 0, 148
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Maple
f:= proc(n) if n mod 3 = 1 then 0 else numtheory:-order(12,2*n+1) fi end proc: 0, seq(f(n),n=1..100); # Robert Israel, Apr 16 2019
-
Mathematica
a[n_] := Module[{s}, s = SelectFirst[Range[EulerPhi[2n+1]], PowerMod[12, #, 2n+1] == 1&]; If[s === Missing["NotFound"], 0, s]]; a /@ Range[0, 100] (* Jean-François Alcover, Jun 04 2020 *)
Comments