A070733 Size of largest conjugacy class in A_n, the alternating group on n symbols.
1, 1, 1, 4, 20, 90, 630, 3360, 30240, 226800, 2494800, 23950080, 311351040, 3632428800, 54486432000, 747242496000, 12703122432000, 200074178304000, 3801409387776000, 67580611338240000, 1419192838103040000, 28100018194440192000, 646300418472124416000
Offset: 1
Keywords
Links
- Eric M. Schmidt, Table of n, a(n) for n = 1..100
Programs
-
GAP
a:=function(n) local G,CC,SCC,SCC1; G:=AlternatingGroup(n); CC:=ConjugacyClasses(G);; SCC:=List(CC,Size); return Maximum(SCC); end;; # W. Edwin Clark, Feb 02 2014
-
Mathematica
a[n_] := (n!/2) / If[OddQ[n], n-3, n-2]; a[1] = a[2] = a[3] = 1; a[4] = 4; a[5] = 20; Array[a, 20] (* Amiram Eldar, Jul 12 2025 *)
-
PARI
a(n) = if(n < 6, [1, 1, 1, 4, 20][n], (n!/2) / if(n % 2, n-3, n-2)); \\ Amiram Eldar, Jul 12 2025
Formula
For n > 5, a(n) = n!/(2(n-2)) if n is even, a(n) = n!/(2(n-3)) if n is odd. - Eric M. Schmidt, Sep 13 2014
Sum_{n>=1} 1/a(n) = 111/10 + 1/e - 3*e. - Amiram Eldar, Jul 12 2025
Extensions
More terms from Eric M. Schmidt, Sep 13 2014
Comments