cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070773 Number of solutions to p(2m)-2p(m)=2n-1, where p(m) = m-th prime.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 2, 2, 0, 1, 0, 2, 1, 1, 3, 1, 1, 0, 1, 2, 0, 2, 1, 1, 1, 3, 2, 1, 3, 0, 1, 2, 2, 0, 0, 0, 0, 2, 1, 0, 3, 0, 3, 2, 3, 3, 1, 0, 0, 2, 2, 3, 2, 0, 3, 1, 0, 1, 1, 0, 1, 1, 1, 1, 7, 1, 2, 2, 1, 1, 1, 1, 2, 1, 0, 2, 0, 0, 2, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 2, 2, 3, 3, 2, 1, 2, 1, 2, 2, 4
Offset: 1

Views

Author

Labos Elemer, May 06 2002

Keywords

Comments

p(2m)-2p(m) is approximately 2m Log[2].

Examples

			n=12: 2n-1=23, no solution, so a(12)=0; n=8: 2n-1=15, p[2x]={53,61,89},2*p(x)=2*{19,23,37}={38,46,74}, p[2x]-2p[x]={15,15,15}, three solutions, so a(8)=3.
		

Crossrefs

Programs

  • Mathematica
    j=0; Table[Print[j]; j=0; Do[s=Prime[2*n]-2*Prime[n]; If[Equal[s, 2*k-1], j=j+1], {n, 1, 2*k}], {k, 1, 11000}] (*number of solution=j*)