cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A070811 Nonprime numbers k such that phi(k-phi(k)) = A054571(k) is not a power of 2.

Original entry on oeis.org

1, 15, 21, 26, 27, 30, 33, 34, 35, 45, 49, 51, 52, 54, 57, 60, 63, 66, 68, 69, 70, 74, 75, 78, 81, 82, 85, 86, 87, 90, 91, 93, 95, 98, 99, 102, 104, 105, 106, 108, 110, 111, 114, 115, 117, 119, 120, 121, 122, 123, 125, 126, 129, 130, 132, 133, 135, 136, 138, 140
Offset: 1

Views

Author

Labos Elemer, May 08 2002

Keywords

Examples

			For k = 30: phi(30) = 8, cototient(30) = 22, phi(22) = 10 is not a power of 2.
		

Crossrefs

Programs

  • Mathematica
    Do[s=EulerPhi[n-EulerPhi[n]]; If[ !IntegerQ[Log[2, s]]&&!PrimeQ[n], Print[n]], {n, 1, 256}]
  • PARI
    is(k) = if(k == 1, 1, if(isprime(k), 0, my(m = eulerphi(k - eulerphi(k))); m >> valuation(m, 2) > 1)); \\ Amiram Eldar, Nov 08 2024

A070806 Primes p such that cototient(totient(p)) = A070556(p) is a power of 2.

Original entry on oeis.org

3, 5, 7, 13, 17, 29, 97, 113, 193, 257, 449, 509, 769, 7937, 12289, 65537, 114689, 520193, 786433, 7340033, 8388593, 33292289, 33550337, 469762049, 2130706433, 3221225473, 8588886017, 137438691329, 206158430209
Offset: 1

Views

Author

Labos Elemer, May 08 2002

Keywords

Examples

			Powers of 2 observable in A070556[this sequence] = {1, 2, 4, 8, 16, 64, 128, 256, 512, 4096, 8192, 32768, 65536, 262144, 524288, ...}. For F(m), Fermat prime:phi[F(m)]=2^m, cototient[2^m]=2^(m-1); if n=113: phi[113]=112, cototient[112]=112-48=64, so 113 is in this sequence.
		

Crossrefs

Programs

  • Mathematica
    Do[s= EulerPhi[n]-EulerPhi[EulerPhi[n]]; If[IntegerQ[Log[2, s]]&&PrimeQ[n], Print[n]], {n, 1, 10000000}]
  • PARI
    ispow2(n)=n==1<Charles R Greathouse IV, May 17 2011

Extensions

a(20)-a(27) from Donovan Johnson, Feb 06 2010
a(28)-a(29) from Charles R Greathouse IV, May 17 2011

A070809 Cototient(totient(n))=A070556(n) is not a power of 2 and n is not a prime number.

Original entry on oeis.org

1, 22, 25, 27, 33, 38, 44, 46, 49, 50, 54, 55, 57, 62, 63, 66, 69, 74, 75, 76, 77, 81, 82, 86, 88, 91, 92, 93, 94, 95, 98, 99, 100, 106, 108, 110, 111, 114, 115, 117, 118, 121, 122, 123, 124, 125, 126, 129, 132, 133, 134, 135, 138, 141, 142, 143, 146, 147, 148
Offset: 1

Views

Author

Labos Elemer, May 08 2002

Keywords

Examples

			n=95: Phi[95]=72,cototient[72]=72-phi[72]=72-24-=48 is not a power of 2.
		

Crossrefs

Programs

  • Mathematica
    Do[s= EulerPhi[n]-EulerPhi[EulerPhi[n]]; If[ !IntegerQ[Log[2, s]]&&!PrimeQ[n], Print[n]], {n, 1, 1000}]

A070810 Nonprime numbers k such that phi(k-phi(k)) = A054571(k) is a power of 2.

Original entry on oeis.org

4, 6, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 25, 28, 32, 36, 38, 39, 40, 42, 44, 46, 48, 50, 55, 56, 58, 62, 64, 65, 72, 76, 77, 80, 84, 88, 92, 94, 96, 100, 112, 116, 118, 124, 128, 134, 144, 152, 158, 160, 165, 168, 176, 184, 188, 192, 200, 202, 224, 232, 235, 236
Offset: 1

Views

Author

Labos Elemer, May 08 2002

Keywords

Examples

			For k = 168: 168 - phi(168) = 168-48 = 120, phi(120) = 32, a power of 2.
		

Crossrefs

Programs

  • Mathematica
    Do[s=EulerPhi[n-EulerPhi[n]]; If[IntegerQ[Log[2, s]]&&!PrimeQ[n], Print[n]], {n, 1, 256}]
  • PARI
    is(k) = if(k == 1 || isprime(k), 0, my(m = eulerphi(k - eulerphi(k))); m >> valuation(m, 2) == 1); \\ Amiram Eldar, Nov 08 2024
Showing 1-4 of 4 results.