A070814 Solutions to phi(gpf(x)) - gpf(phi(x)) = 14 = c are special multiples of 17, x = 17k, where greatest prime factors of factor k were observed from {2, 3, 5}, i.e., it is smaller than 17. See solutions to other even cases of c (=A070813): A007283 for 0, A070004 for 2, A070815 for 254, A070816 for 65534. Gpf = greatest prime factor.
17, 34, 51, 68, 85, 102, 136, 170, 204, 255, 272, 340, 408, 510, 544, 680, 816, 1020, 1088, 1360, 1632, 2040, 2176, 2720, 3264, 4080, 4352, 5440, 6528, 8160, 8704, 10880, 13056, 16320, 17408, 21760, 26112, 32640, 34816, 43520, 52224, 65280
Offset: 1
Keywords
Examples
For n = 32640 = 128*3*5*17, gpf(n) = 17, phi(n) = 16384, commutator[32640] = phi(17) - gpf(16384) = 16 - 2 = 14.
Crossrefs
Programs
-
Mathematica
pf[x_] := Part[Reverse[Flatten[FactorInteger[x]]], 2] Do[s=EulerPhi[pf[n]]-pf[EulerPhi[n]]; If[Equal[s, 14], Print[{n, n/17, pf[n/17]}]], {n, 3, 1000000}] (* Terms of sequence are n *)
Formula
For n > 10, a(n) = 2a(n-4) (conjectured). - Ralf Stephan, May 09 2004
Comments