A070815 Solutions to phi(gpf(x)) - gpf(phi(x)) = 254 = c are special multiples of 257, x = 257k, where largest prime factors of factor k were observed from {2, 3, 5, 17}. See solutions to other even cases of c (=A070813): A007283 for 0, A070004 for 2, A070814 for 14, A070816 for 65534.
257, 514, 771, 1028, 1285, 1542, 2056, 2570, 3084, 3855, 4112, 4369, 5140, 6168, 7710, 8224, 8738, 10280, 12336, 13107, 15420, 16448, 17476, 20560, 21845, 24672, 26214, 30840, 32896, 34952, 41120, 43690, 49344, 52428, 61680, 65535, 65792
Offset: 1
Keywords
Examples
For n = 87380 = 4*5*17*257, gpf(n) = 257, phi(n) = 65536, commutator[87380] = phi(257) - gpf(65536) = 256 - 2 = 254.
Crossrefs
Programs
-
Mathematica
pf[x_] := Part[Reverse[Flatten[FactorInteger[x]]], 2] Do[s=EulerPhi[pf[n]]-pf[EulerPhi[n]]; If[Equal[s, 254], Print[{n, n/257, pf[n/257]}]], {n, 3, 1000000}] (* Terms of sequence are n *)