cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070815 Solutions to phi(gpf(x)) - gpf(phi(x)) = 254 = c are special multiples of 257, x = 257k, where largest prime factors of factor k were observed from {2, 3, 5, 17}. See solutions to other even cases of c (=A070813): A007283 for 0, A070004 for 2, A070814 for 14, A070816 for 65534.

Original entry on oeis.org

257, 514, 771, 1028, 1285, 1542, 2056, 2570, 3084, 3855, 4112, 4369, 5140, 6168, 7710, 8224, 8738, 10280, 12336, 13107, 15420, 16448, 17476, 20560, 21845, 24672, 26214, 30840, 32896, 34952, 41120, 43690, 49344, 52428, 61680, 65535, 65792
Offset: 1

Views

Author

Labos Elemer, May 09 2002

Keywords

Examples

			For n = 87380 = 4*5*17*257, gpf(n) = 257, phi(n) = 65536, commutator[87380] = phi(257) - gpf(65536) = 256 - 2 = 254.
		

Crossrefs

Programs

  • Mathematica
    pf[x_] := Part[Reverse[Flatten[FactorInteger[x]]], 2] Do[s=EulerPhi[pf[n]]-pf[EulerPhi[n]]; If[Equal[s, 254], Print[{n, n/257, pf[n/257]}]], {n, 3, 1000000}] (* Terms of sequence are n *)