This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A070818 #29 Jun 24 2025 03:30:13 %S A070818 45,7,11,143,13,23,119,19,667,713,29,47,31,6929,59,407,37,41,2867,53, %T A070818 83,3149,164561,3233,1403,25631,107,61,3763,1633,1679,71,79,803,73, %U A070818 5959,4559,4717,89,4841,36461,167,103,5353,179,1067,97,101,2507,5989 %N A070818 Smallest argument m such that commutator[phi(m), gpf(m)] = 2n-1, where phi(m) = A000010(m) and gpf(m) = A006530(m), the largest prime factor of m. %C A070818 Only five (no more) even commutator values appear at the arguments of known Fermat primes. These are listed in A070813. Still 0 and -1 emerge: A070812(3) = 0 and A070812(4) = -1. %H A070818 Robert Israel, <a href="/A070818/b070818.txt">Table of n, a(n) for n = 1..10000</a> %F A070818 a(n) = min{x: phi(gpf(x)) - gpf(phi(x)) = 2n - 1} = min{x: A000010(A006530(x)) - A006530(A000010(x)) = 2n - 1}. %e A070818 f(m) = A070812(m) = A000010(A006530(m)) - A006530(A000010(m)); f(m) = 1 appears first at m = 45: phi(45) = 24, gpf(24) = 3, gpf(45) = 5, phi(5) = 4, so a(1) = phi(5) - gpf(24) = 4 - 3 = 1; also a(255) = 3321377 = 97*97*353: because its largest p factor gpf = 353, phi(353) = 352, phi(3321377) = 3277824 = 1024*3*11*97, with max prime factor = 97. Thus a(255) = 352 - 97 = 255. %p A070818 V:= Vector(100): count:= 0: %p A070818 gpf:= t -> max(numtheory:-factorset(t)): %p A070818 for m from 3 while count < 100 do %p A070818 v:= numtheory:-phi(gpf(m))-gpf(numtheory:-phi(m)); %p A070818 if v::even or v < 1 or v > 199 or V[(v+1)/2] > 0 then next fi; %p A070818 V[(v+1)/2]:= m; count:= count+1; %p A070818 od: %p A070818 convert(V,list); # _Robert Israel_, Jun 24 2025 %t A070818 pf[x_] := Part[Reverse[Flatten[FactorInteger[x]]], 2] f[x_] := EulerPhi[pf[n]]-pf[EulerPhi[n]] t=Table[0, {257}]; Do[s=f[n]; If[s<258&&t[[s]]==0, t[[s]]=n], {n, 3, 4000000}]; t %Y A070818 Cf. A000010, A000215, A006530, A070812, A070813. %K A070818 nonn,look %O A070818 1,1 %A A070818 _Labos Elemer_, May 10 2002 %E A070818 5 and 17 removed to make name accurate by _Sean A. Irvine_, Jun 13 2024