cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070860 Decimal expansion of Pi^2/12 - gamma^2 /2.

This page as a plain text file.
%I A070860 #33 Jul 14 2025 04:56:00
%S A070860 6,5,5,8,7,8,0,7,1,5,2,0,2,5,3,8,8,1,0,7,7,0,1,9,5,1,5,1,4,5,3,9,0,4,
%T A070860 8,1,2,7,9,7,6,6,3,8,0,4,7,8,5,8,4,3,4,7,2,9,2,3,6,2,4,4,5,6,8,3,8,7,
%U A070860 0,8,3,8,3,5,3,7,2,2,1,0,2,0,8,6,1,8,2,8,1,5,9,9,4,0,2,1,3,6,4,0,0,0,4,8
%N A070860 Decimal expansion of Pi^2/12 - gamma^2 /2.
%C A070860 This is erroneously computed as the linear term in the Laurent expansion of Gamma(x) = 1/x +c(0) + c(1)*x+ O(x^2) on page 135 of the Patterson book. The correct value of c(1) is A090998. - _R. J. Mathar_, Jul 11 2025
%H A070860 G. C. Greubel, <a href="/A070860/b070860.txt">Table of n, a(n) for n = 0..10000</a>
%H A070860 R. J. Mathar, <a href="https://vixra.org/abs/2507.0094">Erratum to Exercise A4.2 in "An Introduction to the Theory of the Riemann Zeta Function"</a>, viXra:2507.0094 (2025)
%H A070860 S. J. Patterson, <a href="https://doi.org/10.1017/CBO9780511623707.012">An introduction to the theory of the Riemann zeta function</a>, Cambridge studies in advanced mathematics no. 14, (1988) p. 135
%F A070860 (EulerGamma^2 - zeta(2))/2 = -0.65587807152025388....
%F A070860 Equals A072691 - A155969/2.
%e A070860 0.65587807152025388107701951514539048127976638047858434729236244568387...
%t A070860 RealDigits[(Zeta[2] - EulerGamma^2)/2, 10, 100][[1]] (* _G. C. Greubel_, Sep 05 2018 *)
%o A070860 (PARI) -(Euler^2-zeta(2))/2
%o A070860 (Magma) R:= RealField(100); (Pi(R)^2 - 6*EulerGamma(R)^2)/12; // _G. C. Greubel_, Sep 05 2018
%K A070860 cons,nonn
%O A070860 0,1
%A A070860 _Benoit Cloitre_, May 24 2003