A385965 Decimal expansion of the absolute value of the coefficient [x^4] 1/Gamma(x).
0, 4, 2, 0, 0, 2, 6, 3, 5, 0, 3, 4, 0, 9, 5, 2, 3, 5, 5, 2, 9, 0, 0, 3, 9, 3, 4, 8, 7, 5, 4, 2, 9, 8, 1, 8, 7, 1, 1, 3, 9, 4, 5, 0, 0, 4, 0, 1, 1, 0, 6, 0, 9, 3, 5, 2, 2, 0, 6, 5, 8, 1, 2, 9, 7, 6, 1, 8, 0, 0, 9, 6, 8, 7, 5, 9, 7, 5, 9, 8, 8, 5, 4, 7, 1, 0, 7, 7, 0, 1, 2, 9, 4, 7, 8, 7, 7, 1, 3, 2, 3, 3, 5, 3, 2, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 1, 8
Offset: 0
Examples
-0.042002635034095235529003934875....
Links
- Paolo Xausa, Table of n, a(n) for n = 0..10000
- M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions, 6.1.34.
- I. S. Gradsteyn, I. M. Ryzhik, Tables of Series and Products, Academic Press (2014) 8.321.2 gives recurrence.
- R. J. Mathar, Erratum to Exercise A4.2 in "An Introduction to the Theory of the Riemann Zeta Function", viXra:2507.0094 (2025)
- Simon Plouffe, Table up to c_15, (2004)
- J. W. Wrench, Concerning two series for the Gamma Function, Math. Comp. 22 (1968) 617-626, Table 5.
Programs
-
Maple
(4*Zeta(3)-Pi^2*gamma+2*gamma^3)/12 ; evalf(%) ;
-
Mathematica
First[RealDigits[(Pi^2*EulerGamma - 2*EulerGamma^3 - 4*Zeta[3])/12, 10, 100, -1]] (* or *) First[RealDigits[Module[{x}, SeriesCoefficient[1/Gamma[x], {x, 0, 4}]], 10, 100, -1]] (* Paolo Xausa, Aug 08 2025 *)
Comments