cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A385965 Decimal expansion of the absolute value of the coefficient [x^4] 1/Gamma(x).

Original entry on oeis.org

0, 4, 2, 0, 0, 2, 6, 3, 5, 0, 3, 4, 0, 9, 5, 2, 3, 5, 5, 2, 9, 0, 0, 3, 9, 3, 4, 8, 7, 5, 4, 2, 9, 8, 1, 8, 7, 1, 1, 3, 9, 4, 5, 0, 0, 4, 0, 1, 1, 0, 6, 0, 9, 3, 5, 2, 2, 0, 6, 5, 8, 1, 2, 9, 7, 6, 1, 8, 0, 0, 9, 6, 8, 7, 5, 9, 7, 5, 9, 8, 8, 5, 4, 7, 1, 0, 7, 7, 0, 1, 2, 9, 4, 7, 8, 7, 7, 1, 3, 2, 3, 3, 5, 3, 2, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 1, 8
Offset: 0

Views

Author

R. J. Mathar, Jul 13 2025

Keywords

Comments

The Taylor series 1/Gamma(x) = Sum_{i>=1} c_i x^i starts with c_1 = 1, c_2 = gamma = A001620, c_3 = -0.655878... = -A070860 . c_4 = -0.04200263... , absolute value here. Recurrence (i-1)*c_i = gamma *c_{i-1} - Sum_{k=2..i-1} (-1)^k*zeta(k) * c_{i-k} .

Examples

			-0.042002635034095235529003934875....
		

Crossrefs

Cf. A001620 [x^2], A070860 [x^3], A385966 [x^5].

Programs

  • Maple
    (4*Zeta(3)-Pi^2*gamma+2*gamma^3)/12 ; evalf(%) ;
  • Mathematica
    First[RealDigits[(Pi^2*EulerGamma - 2*EulerGamma^3 - 4*Zeta[3])/12, 10, 100, -1]] (* or *)
    First[RealDigits[Module[{x}, SeriesCoefficient[1/Gamma[x], {x, 0, 4}]], 10, 100, -1]] (* Paolo Xausa, Aug 08 2025 *)

Formula

Equals (-4*zeta(3) +Pi^2*gamma -2*gamma^3)/12, gamma = A001620, zeta(3) = A002117, Pi = A000796.

A385966 Decimal expansion of the value of the coefficient [x^5] 1/Gamma(x).

Original entry on oeis.org

1, 6, 6, 5, 3, 8, 6, 1, 1, 3, 8, 2, 2, 9, 1, 4, 8, 9, 5, 0, 1, 7, 0, 0, 7, 9, 5, 1, 0, 2, 1, 0, 5, 2, 3, 5, 7, 1, 7, 7, 8, 1, 5, 0, 2, 2, 4, 7, 1, 7, 4, 3, 4, 0, 5, 7, 0, 4, 6, 8, 9, 0, 3, 1, 7, 8, 9, 9, 3, 8, 6, 6, 0, 5, 6, 4, 7, 4, 2, 4, 8, 3, 1, 9, 4, 7, 1, 9, 1, 4, 6, 5, 8, 0, 4, 1, 6, 2, 6, 6, 2, 3, 9, 5, 5, 9, 3, 4, 0, 5, 1, 2, 8
Offset: 0

Views

Author

R. J. Mathar, Jul 13 2025

Keywords

Comments

The Taylor series 1/Gamma(x) = Sum_{i>=1} c_i x^i starts with c_1 = 1, c_2 = gamma = A001620, c_3 = -0.655878... = -A070860 . c_5 = 0.166538... here.

Examples

			0.16653861138229148950170079510210523571...
		

Crossrefs

Cf. A001620 [x^2], A070860 [x^3], A385965 [x^4].

Programs

  • Maple
    (Pi^4-60*Pi^2*gamma^2+60*gamma^4+480*gamma*Zeta(3))/1440 ; evalf(%) ;
  • Mathematica
    First[RealDigits[(Pi^4 - 60*Pi^2*#^2 + 60*#^4 + 480*#*Zeta[3])/1440 & [EulerGamma], 10, 100]] (* or *)
    First[RealDigits[Module[{x}, SeriesCoefficient[1/Gamma[x], {x, 0, 5}]], 10, 100]] (* Paolo Xausa, Aug 08 2025 *)

Formula

Equals (Pi^4 -60*Pi^2*gamma^2 +60*gamma^4 +480*gamma*zeta(3))/1440, gamma = A001620, zeta(3) = A002117, Pi = A000796.
Showing 1-2 of 2 results.