A070884 7 + x where x is congruent to {0, 4, 6, 10, 12, 16, 22, 24} mod 30.
7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 77, 79, 83, 89, 91, 97, 101, 103, 107, 109, 113, 119, 121, 127, 131, 133, 137, 139, 143, 149, 151, 157, 161, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 203, 209, 211, 217, 221
Offset: 0
Examples
7+0=7, 7+4=11, 7+6=13, 7+10=17, 7+12=19, 7+16=23, ...
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,1,-1).
Programs
-
Perl
$a = 0; while ((($a % 30 == 0 or $a % 30 == 4 or $a % 30 == 6 or $a % 30 == 10 or $a % 30 == 12 or $a % 30 == 16 or $a % 30 == 22 or $a % 30 == 24) and eval("print \"\".(7+\$a).\" \"; return 0;")) or ++$a) { }
Formula
G.f.: ( 7+4*x+2*x^2+4*x^3+2*x^4+4*x^5+6*x^6+2*x^7-x^8 ) / ( (1+x)*(x^2+1)*(x^4+1)*(x-1)^2 ). - R. J. Mathar, Sep 22 2016
Extensions
More terms from Jim McCann (jmccann(AT)umich.edu), Jul 17 2002
Comments