This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A070887 #32 Feb 16 2025 08:32:46 %S A070887 1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,0,0,0,1,1,1,1,0,0,1,1,1,1,0,1,0,1, %T A070887 1,1,1,1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,1,1,0,1,1,1, %U A070887 0,1,0,0,0,1,1,1,1,1,1,1,1,1,1,0,0,1,1,0,0,0,1,1,1,0,0,0,1,0,1 %N A070887 Triangle read by rows giving successive states of one-dimensional cellular automaton generated by "Rule 110". %C A070887 New state of cell is 1 in every case except when the previous states of the cell and its two neighbors were all the same, or when the left neighbor was 1 and the cell and its right neighbor were both 0. %C A070887 A cellular automaton using Rule 110 with arbitrary inputs is a universal Turing machine. %C A070887 Row n has length n. %C A070887 T(n,k) = A075437(n-1,k-1), k=1..n. - _Reinhard Zumkeller_, Jun 26 2013 %D A070887 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 31ff.. %H A070887 Reinhard Zumkeller, <a href="/A070887/b070887.txt">Rows n = 1..120 of triangle, flattened</a> %H A070887 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Rule110.html">Rule 110</a> %H A070887 Wikipedia, <a href="http://en.wikipedia.org/wiki/Rule_110">Rule 110</a> %H A070887 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a> %e A070887 1; %e A070887 1,1; %e A070887 1,1,1; %e A070887 1,1,0,1; %e A070887 1,1,1,1,1; ... %p A070887 A070887 := proc(n,k) %p A070887 option remember; %p A070887 local lef,mid,rig ; %p A070887 if k < 1 or k > n then %p A070887 0; %p A070887 elif n = 1 then %p A070887 1; %p A070887 else %p A070887 lef := procname(n-1,k-2) ; %p A070887 mid := procname(n-1,k-1) ; %p A070887 rig := procname(n-1,k) ; %p A070887 if lef = mid and mid = rig then %p A070887 0 ; %p A070887 elif lef = 1 and mid =0 and rig =0 then %p A070887 0; %p A070887 else %p A070887 1 ; %p A070887 end if; %p A070887 end if; %p A070887 end proc: %p A070887 for n from 1 to 12 do %p A070887 for k from 1 to n do %p A070887 printf("%d ",A070887(n,k)) ; %p A070887 end do: %p A070887 printf("\n") %p A070887 end do: # _R. J. Mathar_, Feb 18 2015 %t A070887 rows = 14; ca = CellularAutomaton[110, {{1}, 0}, rows-1]; Flatten[ Table[ca[[k, rows-k+1 ;; -1]], {k, 1, rows}]] (* _Jean-François Alcover_, May 24 2012 *) %o A070887 (Haskell) %o A070887 a070887 n k = a070887_tabl !! (n-1) !! (k-1) %o A070887 a070887_row n = a070887_tabl !! (n-1) %o A070887 a070887_tabl = zipWith take [1..] a075437_tabf %o A070887 -- _Reinhard Zumkeller_, Jun 26 2013 %Y A070887 Cf. A070950, A070886. %Y A070887 Cf. A047999. %Y A070887 A071049 gives number of ON cells at n-th generation. %K A070887 nonn,tabl,nice,easy %O A070887 1,1 %A A070887 _N. J. A. Sloane_, May 19 2002 %E A070887 More terms from _Hans Havermann_, May 26 2002