This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A070888 #40 Apr 27 2025 08:02:02 %S A070888 1,1,1,1,-1,2,-1,-1,-1,19,-1,-1,-2323,-89,304,304,163,163,-81988, %T A070888 -81988,-15019,410857,-249979,-249979,-249979,4165258,4165258,4165258, %U A070888 9246047,-65721449,-4193929329,-4193929329,-6504197377,-302679716,2562470143 %N A070888 Numerator of Sum_{k=1..n} mu(k)/k. %C A070888 Sum_{k>0} mu(k)/k = limit_{n->oo} A070888(n)/A070889(n) = 0. - _Jean-François Alcover_, Apr 18 2013. This is equivalent to the Prime Number Theorem! - _N. J. A. Sloane_, Feb 04 2022 %D A070888 Harold M. Edwards, Riemann's Zeta Function, Dover Publications, New York, 1974 (ISBN 978-0-486-41740-0), p. 92. %D A070888 Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Chelsea Publishing, NY 1953, p. 568. %H A070888 Amiram Eldar, <a href="/A070888/b070888.txt">Table of n, a(n) for n = 1..2376</a> (terms 1..1906 from Robert Israel) %H A070888 F. K. Richter, <a href="https://arxiv.org/abs/2002.03255">A new elementary proof of the Prime Number Theorem</a>, arXiv preprint arXiv:2002.03255 [math.NT], 2020-2021. %H A070888 Harold N. Shapiro, <a href="https://doi.org/10.1002/cpa.3160020208">Some assertions equivalent to the prime number theorem for arithmetic progressions</a>, Communications on Pure and Applied Mathematics 2.2-3 (1949): 293-308. %e A070888 a(6) = 2 because 1-1/2-1/3-1/5+1/6 = 4/30 = 2/15. %p A070888 T:= 0: %p A070888 for n from 1 to 100 do %p A070888 T:= T + numtheory:-mobius(n)/n; %p A070888 A[n]:= numer(T) %p A070888 od: %p A070888 seq(A[n],n=1..100); # _Robert Israel_, Aug 04 2014 %t A070888 Table[ Numerator[ Sum[ MoebiusMu[k]/k, {k, 1, n}]], {n, 1, 37}] %o A070888 (PARI) t = 0; v = []; for( n = 1, 60, t= t + moebius( n) / n; v = concat( v, numerator( t))); v \\ adapted to latest PARI version by _Michel Marcus_, Aug 04 2014 %o A070888 (Python) %o A070888 from functools import lru_cache %o A070888 from sympy import harmonic %o A070888 @lru_cache(maxsize=None) %o A070888 def f(n): %o A070888 if n <= 1: %o A070888 return 1 %o A070888 c, j = 1, 2 %o A070888 k1 = n//j %o A070888 while k1 > 1: %o A070888 j2 = n//k1 + 1 %o A070888 c += (harmonic(j-1)-harmonic(j2-1))*f(k1) %o A070888 j, k1 = j2, n//j2 %o A070888 return c+harmonic(j-1)-harmonic(n) %o A070888 def A070888(n): return f(n).numerator # _Chai Wah Wu_, Nov 03 2023 %Y A070888 Cf. A008683, A068337, A070889 (denominators). %K A070888 frac,sign %O A070888 1,6 %A A070888 _Donald S. McDonald_, May 17 2002 %E A070888 Edited by _Robert G. Wilson v_, Jun 10 2002