This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A070889 #21 Nov 03 2023 17:01:58 %S A070889 1,2,6,6,30,15,105,105,105,210,2310,2310,30030,15015,5005,5005,85085, %T A070889 85085,1616615,1616615,4849845,9699690,223092870,223092870,223092870, %U A070889 111546435,111546435,111546435,3234846615,2156564410,66853496710 %N A070889 Denominator of Sum_{k=1..n} mu(k)/k. %H A070889 Amiram Eldar, <a href="/A070889/b070889.txt">Table of n, a(n) for n = 1..2370</a> %e A070889 a(6) = 15 because 1 - 1/2 - 1/3 - 1/5 + 1/6 = 4/30 = 2/15. %t A070889 Table[ Denominator[ Sum[ MoebiusMu[k]/k, {k, 1, n}]], {n, 1, 37}] %o A070889 (PARI) t = 0; v = []; for( n = 1, 30, t = t + moebius( n) / n; v = concat( v, denominator( t))); v %o A070889 (Python) %o A070889 from functools import lru_cache %o A070889 from sympy import harmonic %o A070889 @lru_cache(maxsize=None) %o A070889 def f(n): %o A070889 if n <= 1: %o A070889 return 1 %o A070889 c, j = 1, 2 %o A070889 k1 = n//j %o A070889 while k1 > 1: %o A070889 j2 = n//k1 + 1 %o A070889 c += (harmonic(j-1)-harmonic(j2-1))*f(k1) %o A070889 j, k1 = j2, n//j2 %o A070889 return c+harmonic(j-1)-harmonic(n) %o A070889 def A070889(n): return f(n).denominator # _Chai Wah Wu_, Nov 03 2023 %Y A070889 Cf. A008683, A068337, A070888 (numerators). %K A070889 frac,nonn %O A070889 1,2 %A A070889 _Donald S. McDonald_, May 17 2002 %E A070889 Edited by _Robert G. Wilson v_, Jun 10 2002