cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070909 Triangle read by rows giving successive states of cellular automaton generated by "Rule 28" and by "Rule 156".

This page as a plain text file.
%I A070909 #45 Feb 16 2025 08:32:46
%S A070909 1,1,1,1,0,1,1,0,1,1,1,0,1,0,1,1,0,1,0,1,1,1,0,1,0,1,0,1,1,0,1,0,1,0,
%T A070909 1,1,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,1,1,0,1,0,1,0,1,0,1,0,1,1,0,
%U A070909 1,0,1,0,1,0,1,0,1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0
%N A070909 Triangle read by rows giving successive states of cellular automaton generated by "Rule 28" and by "Rule 156".
%C A070909 Row n has length n+1.
%C A070909 From _Gary W. Adamson_, May 15 2010: (Start)
%C A070909 Eigensequence of the triangle = A038754 (i.e., 1, 1, 2, 3, 6, 9, 18, ...) shifts to the left with multiplication by triangle A070909.
%C A070909 Binomial transform of A070909 = triangle A177953. (End)
%C A070909 From _Paul Barry_, Nov 03 2010: (Start)
%C A070909 Generalized (conditional) Riordan array with k-th column generated by x^k/(1-x) if k is even, x^k otherwise.
%C A070909 A181651 is an eigentriangle. Inverse is A181650. (End)
%C A070909 From _Peter Bala_, Aug 15 2021: (Start)
%C A070909 Double Riordan array (1/(1 - x); x*(1 - x), x/(1 - x)) as defined in Davenport et al. The inverse array is the double Riordan array (1 - x - x^2; x/(1 - x - x^2), x*(1 - x - x^2)).
%C A070909 In general, double Riordan arrays of the form (g(x); x/g(x), x*g(x)), where g(x) = 1 + g_1*x + g_2*x^2 + ..., form a group under matrix multiplication with the group law given by (g(x); x/g(x), x*g(x)) * (G(x); x/G(x), x*G(x)) = (h(x); x/h(x), x*h(x)), where h(x) = G(x) + (g(x) - 1)*(G(x) + G(-x))/2.  The inverse array of (g(x); x/g(x), x*g(x)) equals (f(x); x/f(x), x*f(x)), where f(x) = (2 - (g(x) - g(-x)))/(g(x) + g(-x)). (End)
%D A070909 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; Chapter 3.
%H A070909 Peter Bala, <a href="/A177994/a177994.pdf">Matrices with repeated columns - the generalised Appell groups</a>
%H A070909 D. E. Davenport, L. W. Shapiro and L. C. Woodson, <a href="https://doi.org/10.37236/2034">The Double Riordan Group</a>, The Electronic Journal of Combinatorics, 18(2) (2012).
%H A070909 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Rule28.html">Rule 28</a>
%H A070909 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%e A070909 From _Paul Barry_, Nov 03 2010: (Start)
%e A070909 Triangle begins
%e A070909   1;
%e A070909   1, 1;
%e A070909   1, 0, 1;
%e A070909   1, 0, 1, 1;
%e A070909   1, 0, 1, 0, 1;
%e A070909   1, 0, 1, 0, 1, 1;
%e A070909   1, 0, 1, 0, 1, 0, 1;
%e A070909   1, 0, 1, 0, 1, 0, 1, 1;
%e A070909   1, 0, 1, 0, 1, 0, 1, 0, 1;
%e A070909   1, 0, 1, 0, 1, 0, 1, 0, 1, 1;
%e A070909 Production matrix begins
%e A070909   1,  1;
%e A070909   0, -1,  1;
%e A070909   0, -1,  1,  1;
%e A070909   0,  0,  0, -1,  1;
%e A070909   0,  0,  0, -1,  1,  1;
%e A070909   0,  0,  0,  0,  0, -1,  1;
%e A070909   0,  0,  0,  0,  0, -1,  1,  1;
%e A070909   0,  0,  0,  0,  0,  0,  0, -1,  1;
%e A070909   0,  0,  0,  0,  0,  0,  0, -1,  1,  1;
%e A070909   0,  0,  0,  0,  0,  0,  0,  0,  0, -1,  1; (End)
%t A070909 rows = 14; ca = CellularAutomaton[28, {{1}, 0}, rows-1]; Flatten[Table[ca[[k, 1 ;; k]], {k, 1, rows}]] (* _Jean-François Alcover_, May 24 2012 *)
%Y A070909 Inverse array A181650. Cf. A038754, A266502, A266508.
%K A070909 nonn,tabl
%O A070909 0,1
%A A070909 _Hans Havermann_, May 26 2002