This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A070918 #21 Feb 12 2020 13:08:30 %S A070918 1,-2,1,6,-5,1,-30,31,-10,1,210,-247,101,-17,1,-2310,2927,-1358,288, %T A070918 -28,1,30030,-40361,20581,-5102,652,-41,1,-510510,716167,-390238, %U A070918 107315,-16186,1349,-58,1,9699690,-14117683,8130689,-2429223,414849,-41817,2451,-77,1 %N A070918 Triangle of T(n,k) coefficients of polynomials with first n prime numbers as roots. %C A070918 Analog of the Stirling numbers of the first kind (A008275): The Stirling numbers (beginning with the 2nd row) are the coefficients of the polynomials having exactly the first n natural numbers as roots. This sequence (beginning with first row) consists of the coefficients of the polynomials having exactly the first n prime numbers as roots. %H A070918 Alois P. Heinz, <a href="/A070918/b070918.txt">Rows n = 0..140, flattened</a> %F A070918 From _Alois P. Heinz_, Aug 18 2019: (Start) %F A070918 T(n,k) = [x^k] Product_{i=1..n} (x-prime(i)). %F A070918 Sum_{k=0..n} |T(n,k)| = A054640(n). %F A070918 |Sum_{k=0..n} T(n,k)| = A005867(n). %F A070918 |Sum_{k=0..n} k * T(n,k)| = A078456(n). (End) %e A070918 Row 4 of this sequence is 210, -247, 101, -17, 1 because (x-prime(1))(x-prime(2))(x-prime(3))(x-prime(4)) = (x-2)(x-3)(x-5)(x-7) = x^4 - 17*x^3 + 101*x^2 - 247*x + 210. %e A070918 Triangle begins: %e A070918 1; %e A070918 -2, 1; %e A070918 6, -5, 1; %e A070918 -30, 31, -10, 1; %e A070918 210, -247, 101, -17, 1; %e A070918 -2310, 2927, -1358, 288, -28, 1; %e A070918 30030, -40361, 20581, -5102, 652, -41, 1; %e A070918 -510510, 716167, -390238, 107315, -16186, 1349, -58, 1; %e A070918 ... %p A070918 T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(mul(x-ithprime(i), i=1..n)): %p A070918 seq(T(n), n=0..10); # _Alois P. Heinz_, Aug 18 2019 %t A070918 Table[CoefficientList[Expand[Times@@(x-Prime[Range[n]])],x],{n,0,10}]// Flatten (* _Harvey P. Dale_, Feb 12 2020 *) %o A070918 (PARI) p=1; for(k=1,10,p=p*(x-prime(k)); for(n=0,k,print1(polcoeff(p,n),","))) %Y A070918 Cf. A008275 (Stirling numbers of first kind). %Y A070918 Cf. A005867 (absolute values of row sums). %Y A070918 Cf. A054640 (sum of absolute values of terms in rows). %Y A070918 Cf. A000040, A078456. %K A070918 sign,tabl %O A070918 0,2 %A A070918 _Rick L. Shepherd_, May 20 2002 %E A070918 First term T(0,0)=1 prepended by _Alois P. Heinz_, Aug 18 2019