This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A070925 #26 Aug 20 2024 03:09:33 %S A070925 1,1,3,3,7,7,19,17,51,47,151,137,471,427,1519,1391,5043,4651,17111, %T A070925 15883,59007,55123,206259,193723,729095,688007,2601639,2465133, %U A070925 9358943,8899699,33904323,32342235,123580883,118215779,452902071,434314137,1667837679,1602935103 %N A070925 Number of subsets of A = {1,2,...,n} that have the same center of gravity as A, i.e., (n+1)/2. %C A070925 From _Gus Wiseman_, Apr 15 2023: (Start) %C A070925 Also the number of nonempty subsets of {0..n} with mean n/2. The a(0) = 1 through a(5) = 7 subsets are: %C A070925 {0} {0,1} {1} {0,3} {2} {0,5} %C A070925 {0,2} {1,2} {0,4} {1,4} %C A070925 {0,1,2} {0,1,2,3} {1,3} {2,3} %C A070925 {0,2,4} {0,1,4,5} %C A070925 {1,2,3} {0,2,3,5} %C A070925 {0,1,3,4} {1,2,3,4} %C A070925 {0,1,2,3,4} {0,1,2,3,4,5} %C A070925 (End) %H A070925 Fausto A. C. Cariboni, <a href="/A070925/b070925.txt">Table of n, a(n) for n = 1..40</a> %F A070925 From _Gus Wiseman_, Apr 18 2023: (Start) %F A070925 a(2n+1) = A000980(n) - 1. %F A070925 a(n) = A222955(n) - 1. %F A070925 a(n) = 2*A362046(n) + 1. %F A070925 (End) %e A070925 Of the 32 (2^5) sets which can be constructed from the set A = {1,2,3,4,5} only the sets {3}, {2, 3, 4}, {2, 4}, {1, 2, 4, 5}, {1, 2, 3, 4, 5}, {1, 3, 5}, {1, 5} give an average of 3. %t A070925 Needs["DiscreteMath`Combinatorica`"]; f[n_] := Block[{s = Subsets[n], c = 0, k = 2}, While[k < 2^n + 1, If[ (Plus @@ s[[k]]) / Length[s[[k]]] == (n + 1)/2, c++ ]; k++ ]; c]; Table[ f[n], {n, 1, 20}] %t A070925 (* second program *) %t A070925 Table[Length[Select[Subsets[Range[0,n]],Mean[#]==n/2&]],{n,0,10}] (* _Gus Wiseman_, Apr 15 2023 *) %Y A070925 The odd bisection is A000980(n) - 1 = 2*A047653(n) - 1. %Y A070925 For median instead of mean we have A100066, bisection A006134. %Y A070925 Including the empty set gives A222955. %Y A070925 The one-based version is A362046, even bisection A047653(n) - 1. %Y A070925 A007318 counts subsets by length. %Y A070925 A067538 counts partitions with integer mean, strict A102627. %Y A070925 A231147 counts subsets by median. %Y A070925 A327481 counts subsets by integer mean. %Y A070925 Cf. A024718, A057552, A079309, A133406, A326512, A326513, A326537, A327475, A349156, A359893. %K A070925 nonn %O A070925 1,3 %A A070925 Sharon Sela (sharonsela(AT)hotmail.com), May 20 2002 %E A070925 Edited by _Robert G. Wilson v_ and _John W. Layman_, May 25 2002 %E A070925 a(34)-a(38) from _Fausto A. C. Cariboni_, Oct 08 2020