A070936 Square array read by antidiagonals: T(n,k) = number of partitions of n into distinct parts, each no more than k.
1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 2, 0, 0, 0, 1, 1, 1, 2, 1, 0, 0, 0, 1, 1, 1, 2, 2, 1, 0, 0, 0, 1, 1, 1, 2, 2, 2, 1, 0, 0, 0, 1, 1, 1, 2, 2, 3, 2, 0, 0, 0, 0, 1, 1, 1, 2, 2, 3, 3, 2, 0, 0, 0, 0, 1, 1, 1, 2, 2, 3, 4, 3, 1, 0, 0, 0, 0, 1, 1, 1, 2, 2, 3, 4, 4, 3, 1, 0, 0, 0, 0
Offset: 0
Examples
Rows start 1,1,1,1,1,...; 0,1,1,1,1,...; 0,0,1,1,1,...; 0,0,1,2,2,...; 0,0,0,1,2,...; etc. T(10,5)=3 since 10 can be partitioned 3 ways as 5+4+1=5+3+2=4+3+2+1 with each part less than or equal to 5.
Links
- Seiichi Manyama, Antidiagonals n = 0..139, flattened
- Henry Bottomley, Partition calculators using java applets
- Index entries for sequences related to partitions