cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070937 Number of times maximal coefficient (A025591) appears in Product_{k<=n} (x^k + 1), i.e., number of times highest value appears in n-th row of A053632 or n-th column of A070936.

Original entry on oeis.org

1, 2, 4, 1, 5, 6, 4, 5, 1, 4, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1
Offset: 0

Views

Author

Henry Bottomley, May 12 2002

Keywords

Examples

			a(4)=5 since Product_{k<=4} (x^k + 1) = 1 + x + x^2 + 2x^3 + 2x^4 + 2x^5 + 2x^6 + 2x^7 + x^8 + x^9 + x^10 and 2 appears as a coefficient 5 times.
		

Formula

If n mod 4 = 0 or 3 then a(n) odd, otherwise a(n) even.
For n > 9: a(n) = A014695(n).
From Chai Wah Wu, Apr 10 2021: (Start)
a(n) = a(n-1) - a(n-2) + a(n-3) for n > 12.
G.f.: (2*x^12 - 2*x^11 + 6*x^10 - 4*x^9 + 6*x^8 - 2*x^7 - 2*x^6 + 2*x^5 - 6*x^4 + 2*x^3 - 3*x^2 - x - 1)/((x - 1)*(x^2 + 1)). (End)