cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070987 Number of terms in simple continued fraction for sum(k=1,n,1/k^4).

This page as a plain text file.
%I A070987 #9 Dec 20 2012 18:23:58
%S A070987 1,2,8,8,9,12,22,23,27,29,33,33,49,39,48,52,58,62,65,68,73,67,75,72,
%T A070987 80,83,87,89,100,91,93,109,113,112,101,105,107,118,123,131,118,120,
%U A070987 123,141,151,148,157,165,157,170,180,158,187,181,181,195,187,181,194,188
%N A070987 Number of terms in simple continued fraction for sum(k=1,n,1/k^4).
%C A070987 sum(k>=1,1/k^4)=zeta(4)=Pi^4/90
%H A070987 Harvey P. Dale, <a href="/A070987/b070987.txt">Table of n, a(n) for n = 1..1000</a>
%F A070987 lim n ->infinity a(n)/n=C=3, 3....
%e A070987 The simple continued fraction for sum(k=1,10,1/k^4) is [1, 12, 5, 3, 1, 2, 10, 12, 1, 2, 4, 2, 2, 2, 1, 7, 11, 1, 1, 2, 5, 2, 2, 4, 3, 1, 1, 1, 2] which contains 29 terms, hence a(10)=29.
%t A070987 Length[ContinuedFraction[#]]&/@Accumulate[1/Range[60]^4] (* _Harvey P. Dale_, Dec 20 2012 *)
%o A070987 (PARI) for(n=1,100,print1(length(contfrac(sum(i=1,n,1/i^4))),","))
%Y A070987 Cf. A055573.
%K A070987 easy,nonn
%O A070987 1,2
%A A070987 _Benoit Cloitre_, May 18 2002