This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A070995 #18 Mar 31 2025 12:07:28 %S A070995 1,5,50,17794,174685429024800,1476099903835055889100, %T A070995 569361345959217303084880851701375547158, %U A070995 24894339520238610434672964029323166045198384692144,221903632506534809770887023612289701531002339299063461384464526904412590996 %N A070995 Number of nonisomorphic (undirected) Cayley graphs for the group Zp x Zp, where Zp is the elementary Abelian group of order p and p is prime. The sequence is index by primes, though starts with 1. %C A070995 The formula comes from a cycle index; There is a similar formula for directed Cayley graphs %D A070995 C. Godsil, On Cayley graph isomorphisms, Ars, Combin., 15:231-246, 1983 %H A070995 B. Alspach and M. Mishna, <a href="http://dx.doi.org/10.1016/S0012-365X(02)00319-9">Enumeration of Cayley graphs and digraphs</a>, Discr. Math., 256 (2002), 527-539. [Note: In the third sum of Theorem 4.2 the exponent should be (p^2-1)/2/h(d). - _Sean A. Irvine_ and _Marni Mishna_, Jul 28 2024] %H A070995 Sean A. Irvine, <a href="https://github.com/archmageirvine/joeis/blob/master/src/irvine/oeis/a070/A070995.java">Java program</a> (github) %H A070995 M. Mishna, <a href="https://www.sfu.ca/~mmishna/PUB/sfu-thesis.pdf">Cayley Graphs</a> %Y A070995 Cf. A049287. %K A070995 nonn %O A070995 1,2 %A A070995 _Marni Mishna_, May 18 2002 %E A070995 a(9) from _Sean A. Irvine_, Jul 22 2024