cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071036 Triangle read by rows giving successive states of cellular automaton generated by "Rule 150" when started with a single ON cell.

This page as a plain text file.
%I A071036 #49 Feb 16 2025 08:32:46
%S A071036 1,1,1,1,1,0,1,0,1,1,1,0,1,0,1,1,1,0,0,0,1,0,0,0,1,1,1,1,0,1,1,1,0,1,
%T A071036 1,1,1,0,1,0,0,0,1,0,0,0,1,0,1,1,1,0,1,1,0,1,1,1,0,1,1,0,1,1,1,0,0,0,
%U A071036 0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0,0,0,1,1
%N A071036 Triangle read by rows giving successive states of cellular automaton generated by "Rule 150" when started with a single ON cell.
%C A071036 Row n has length 2n+1.
%C A071036 Also the coefficients of (x^2 + x + 1)^n mod 2. - _Alan DenAdel_, Mar 19 2014
%C A071036 The number of 0's in row n is A071052(n), and the number of 1's in row n is A071053(n). - _Michael Somos_, Jun 24 2018
%D A071036 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; Chapter 3.
%H A071036 Robert Price, <a href="/A071036/b071036.txt">Table of n, a(n) for n = 0..9999</a>
%H A071036 Rémy Sigrist, <a href="/A071036/a071036.png">Representation of the first 2^10 rows of the table</a>
%H A071036 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H A071036 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H A071036 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%H A071036 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%F A071036 a(n) = A027907(n) modulo 2. - _Michel Marcus_, Mar 20 2014
%e A071036 Triangle begins:
%e A071036                1;
%e A071036             1, 1, 1;
%e A071036          1, 0, 1, 0, 1;
%e A071036       1, 1, 0, 1, 0, 1, 1;
%e A071036    1, 0, 0, 0, 1, 0, 0, 0, 1;
%e A071036 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1;
%e A071036 ... - _Michel Marcus_, Mar 20 2014
%t A071036 T[ n_, k_] := T[n, k] = Which[k < 0 || k > 2 n, 0, n == k == 0, 1, True, Mod[ T[n - 1, k - 2] + T[n - 1, k - 1] + T[n - 1, k], 2]]; (* _Michael Somos_, Jun 24 2018 *)
%o A071036 (PARI) rown(n) = Vec(lift((x^2 + x + 1)^n * Mod(1, 2))); \\ _Michel Marcus_, Mar 20 2014
%Y A071036 Cf. A027907, A071052, A071053.
%Y A071036 This sequence, A038184 and A118110 are equivalent descriptions of the Rule 150 automaton.
%K A071036 nonn,tabf
%O A071036 0,1
%A A071036 _Hans Havermann_, May 26 2002
%E A071036 Corrected by _Hans Havermann_, Jan 08 2012