A071049 Number of 1's in n-th generation of 1-D CA using Rule 110, started with a single 1.
1, 2, 3, 3, 5, 3, 5, 6, 8, 5, 6, 8, 8, 8, 11, 11, 13, 9, 11, 11, 13, 14, 16, 14, 14, 13, 13, 17, 22, 20, 16, 17, 24, 19, 14, 19, 25, 18, 20, 25, 24, 19, 24, 31, 27, 26, 24, 22, 32, 31, 28, 24, 29, 34, 30, 31, 37, 34, 34, 36, 35, 34, 35, 36, 43, 40, 36, 38, 37, 39, 40
Offset: 0
Keywords
References
- Matthew Cook, A Concrete View of Rule 110 Computation, in "The Complexity of Simple Programs", T. Neary, D. Woods, A. K. Seda, and N. Murphy (Eds.), 2008, pp. 31-55.
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; Chapter 3.
Links
- Vincenzo Librandi and N. J. A. Sloane, Table of n, a(n) for n = 0..10000 (First 1000 terms from Vincenzo Librandi)
- Matthew Cook, A Concrete View of Rule 110 Computation, arXiv:0906.3248 [cs.CC], 2009.
- Matthew Cook, Universality in Elementary Cellular Automata, Complex Systems 15 (2004), 1-40.
- N. J. A. Sloane, Illustration of first 20 generations
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
- Eric Weisstein's World of Mathematics, Rule 110
- Wikipedia, Rule 110
- Index entries for sequences related to cellular automata
Programs
-
Maple
A071049 := proc(n) add( A070887(n+1,k),k=1..n+1) ; end proc: seq(A071049(n),n=0..20) ; # R. J. Mathar, Feb 18 2015
-
Mathematica
Total /@ CellularAutomaton[110,{{1},0},100] (* N. J. A. Sloane, Aug 10 2009 *)
Formula
For n >= 2854, a(n+469) = -a(n+453) + a(n+256) + a(n+240) + a(n+229) + a(n+213) - a(n+16) - a(n). - N. J. A. Sloane, May 15 2015
Extensions
Added references and links. - N. J. A. Sloane, Aug 09 2014
Changed offset to make consistent with A070952, etc. - N. J. A. Sloane, Aug 15 2014
Comments