cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071090 Sum of middle divisors of n.

Original entry on oeis.org

1, 1, 0, 2, 0, 5, 0, 2, 3, 0, 0, 7, 0, 0, 8, 4, 0, 3, 0, 9, 0, 0, 0, 10, 5, 0, 0, 11, 0, 11, 0, 4, 0, 0, 12, 6, 0, 0, 0, 13, 0, 13, 0, 0, 14, 0, 0, 14, 7, 5, 0, 0, 0, 15, 0, 15, 0, 0, 0, 16, 0, 0, 16, 8, 0, 17, 0, 0, 0, 17, 0, 23, 0, 0, 0, 0, 18, 0, 0, 18, 9, 0, 0, 19, 0, 0, 0, 19, 0, 19, 20, 0, 0
Offset: 1

Views

Author

N. J. A. Sloane, May 27 2002

Keywords

Comments

Divisors are in the half-open interval [sqrt(n/2), sqrt(n*2)).
Row sums of A299761. - Omar E. Pol, Jun 11 2022

Crossrefs

Programs

  • Maple
    A071090 := proc(n)
        a := 0 ;
        for d in numtheory[divisors](n) do
            if d^2 >= n/2 and d^2 < n*2 then
                a := a+d ;
            end if;
        end do:
        a;
    end proc: # R. J. Mathar, Jun 18 2015
  • Mathematica
    Table[Plus @@ Select[ Divisors[n], Sqrt[n/2] <= # < Sqrt[n*2] &], {n, 1, 95}]
  • PARI
    a(n)=sumdiv(n,d, if(d^2>=n/2 && d^2<2*n, d, 0)) \\ Charles R Greathouse IV, Aug 01 2016

Formula

a(n) = A000203(n) - A302433(n). - Omar E. Pol, Jun 11 2022