This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A071095 #35 Oct 22 2022 09:46:22 %S A071095 1,6,175,24696,16818516,55197331332,872299918503728, %T A071095 66345156372852988800,24277282058281388285162560, %U A071095 42730166102274086598901662210000,361690697335823816369045433734882109375,14721491647169381835282394824891766183125000000,2880942480871157389699990094736740229925045312500000000 %N A071095 Number of ways to tile hexagon of edges n, n+1, n+1, n, n+1, n+1 with diamonds of side 1. %D A071095 J. Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see page 261). %H A071095 Seiichi Manyama, <a href="/A071095/b071095.txt">Table of n, a(n) for n = 0..53</a> %H A071095 J. Propp, <a href="http://faculty.uml.edu/jpropp/update.pdf">Updated article</a> %H A071095 J. Propp, Enumeration of matchings: problems and progress, in L. J. Billera et al. (eds.), <a href="http://www.msri.org/publications/books/Book38/contents.html">New Perspectives in Algebraic Combinatorics</a> %F A071095 a(n) = Product_{i=0..a-1} Product_{j=0..b-1} Product_{k=0..c-1} (i+j+k+2)/(i+j+k+1) with a=n, b=c=n+1. %F A071095 a(n) ~ exp(1/12) * 3^(9*n^2/2 + 6*n + 23/12) / (A * n^(1/12) * 2^(6*n^2 + 8*n + 11/4)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - _Vaclav Kotesovec_, Apr 26 2015 %F A071095 a(n) = (-1)^floor(n/2)*det(M(n)) where M(n) is the n X n matrix with m(i,j) = binomial(2*n+i+j,i+j). - _Benoit Cloitre_, Oct 22 2022 %t A071095 Table[Product[(i+j+k+2)/(i+j+k+1),{i,0,n-1},{j,0,n},{k,0,n}],{n,0,15}] (* _Vaclav Kotesovec_, Apr 26 2015 *) %o A071095 (PARI) a(n) = prod(i=0, n-1, prod(j=0, n, prod(k=0, n, (i+j+k+2)/(i+j+k+1)))) \\ _Michel Marcus_, May 20 2013 %Y A071095 Cf. A008793, A103905. %K A071095 nonn %O A071095 0,2 %A A071095 _N. J. A. Sloane_, May 28 2002