A071111 a(n) is the least integer x such that there exists an integer in the open interval (x/(i+1), x/i) for i= n-1, n-2 ..., 3, 2, 1.
3, 5, 7, 13, 17, 26, 31, 43, 57, 65, 82, 101, 111, 133, 157, 183, 197, 226, 257, 290, 307, 343, 381, 421, 463, 485, 530, 577, 626, 677, 703, 757, 813, 871, 931, 993, 1025, 1090, 1157, 1226, 1297, 1370, 1407, 1483, 1561, 1641, 1723, 1807, 1893, 1937, 2026, 2117
Offset: 2
Examples
a(4)=7 because 2 lies in (7/4,7/3), 3 lies in (7/3,7/2) and 4, 5 and 6 lie in (7/2,7) and for x<7 the definition doesn't hold.
Links
- T. D. Noe, Table of n, a(n) for n=2..1000
- Max Alekseyev, Proof that A001000 and A071111 are essentially the same sequence
- Florian Herzig and Peter Tingley, Solutions to Problem 2272, Crux Mathematicorum 24:7 (1998), pp. 438-441.
Programs
-
Mathematica
test[x_, n_] := Module[{k}, For[k=n, x<=k(k-1), k--, If[Ceiling[x/(k-1)]-Floor[x/k]<2, Return[False]]]; True]; a[n_] := For[x=1, True, x++, If[test[x, n], Return[x]]]
Formula
For 2<=n<=200, a(n) = n^2 - n*c(n) + floor(c(n)^2/4) + 1, where c(n) = floor(sqrt(4n-5)). Is this true for all n>=2?
Extensions
Edited by Dean Hickerson and Robert G. Wilson v, Jun 04 2002
Comments