This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A071115 #19 Jan 31 2023 08:48:39 %S A071115 1,2,4,11,34,152,1007,7335,85761,812767 %N A071115 a(1) = 1; a(n+1) is the smallest integer > 0 that cannot be obtained from the integers {a(1), ..., a(n)} using each number at most once and the operators +, -, *, /, where intermediate subexpressions must be integers. %C A071115 a(n+1) > 2*a(n) + 2 for n > 3 since a(n) may be added to every number possible at the previous step (at least 1..a(n)-1) and a(n), 2*a(n), 2*a(n)+1, and 2*(a(n)+1) are also present. - _Michael S. Branicky_, Jan 30 2023 %H A071115 Gilles Bannay, <a href="https://web.archive.org/web/20061201125224/http://gilles.bannay.free.fr/jeux_us.html">Countdown Problem</a> %H A071115 <a href="/index/Fo#4x4">Index entries for similar sequences</a> %e A071115 a(4)=11 because we can write 4+1=5, 4+2=6, 4+2+1=7, 4*2=8, 4*2+1=9, (4+1)*2=10 by using 1, 2 and 4 but we cannot do the same thing for 11. %o A071115 (Python) %o A071115 def a(n, v): %o A071115 R = dict() # index of each reachable subset is [card(s)-1][s] %o A071115 for i in range(n): R[i] = dict() %o A071115 for i in range(n): R[0][(v[i],)] = {v[i]} %o A071115 reach = set(v) %o A071115 for j in range(1, n): %o A071115 for i in range((j+1)//2): %o A071115 for s1 in R[i]: %o A071115 for s2 in R[j-1-i]: %o A071115 if set(s1) & set(s2) == set(): %o A071115 s12 = tuple(sorted(set(s1) | set(s2))) %o A071115 if s12 not in R[len(s12)-1]: %o A071115 R[len(s12)-1][s12] = set() %o A071115 for a in R[i][s1]: %o A071115 for b in R[j-1-i][s2]: %o A071115 allowed = [a+b, a*b, a-b, b-a] %o A071115 if a!=0 and b%a==0: allowed.append(b//a) %o A071115 if b!=0 and a%b==0: allowed.append(a//b) %o A071115 R[len(s12)-1][s12].update(allowed) %o A071115 reach.update(allowed) %o A071115 k = 1 %o A071115 while k in reach: k += 1 %o A071115 return k %o A071115 alst = [1] %o A071115 [alst.append(a(n, alst)) for n in range(1, 8)] %o A071115 print(alst) # _Michael S. Branicky_, Jul 01 2022 %Y A071115 Cf. A060315, A217043 (allows intermediate fractions). %K A071115 hard,more,nonn %O A071115 1,2 %A A071115 Koksal Karakus (karakusk(AT)hotmail.com), May 27 2002